JManus 是一个以 Java 为核心、完全开源的 OpenManus 实现,隶属于 Spring AI Alibaba 项目。它旨在让 Java 程序员更便捷地使用 AI 技术,支持多 Agent 框架、网页配置 Agent、MCP 协议和 PLAN-ACT 模式。项目在 GitHub 上已获近 3k star,可集成多个大模型如 Claude 3.5 和 Qwen3。开发者可通过 IDE 或 Maven 快速运行项目,体验智能问答与工具调用功能。欢迎参与开源共建,推动通用 AI Agent 框架发展。
随着AI应用变得越来越复杂并被广泛部署,原有的通信机制面临着一系列挑战。近期MCP仓库的PR #206引入了一个全新的Streamable HTTP传输层替代原有的HTTP+SSE传输层。本文将详细分析该协议的技术细节和实际优势。
本文介绍了如何通过alibaba-cloud-ops-mcp-server和MCP(Model Context Protocol)实现AI助手对阿里云资源的复杂任务操作。内容涵盖背景、准备步骤(如使用VS Code与Cline配置MCP Server)、示例场景(包括创建实例、监控实例、运行命令、启停实例等),以及支持的工具列表和参考文档。借助这些工具,用户可通过自然语言与AI助手交互,完成ECS实例管理、VPC查询、云监控数据获取等运维任务,实现高效“掌上运维”。
本文深入解析了Model Context Protocol(MCP)协议,探讨其在AI领域的应用与技术挑战。MCP作为AI协作的“USB-C接口”,通过标准化数据交互解决大模型潜力释放的关键瓶颈。文章详细分析了MCP的生命周期、传输方式(STDIO与SSE),并提出针对SSE协议不足的优化方案——MCP Proxy,实现从STDIO到SSE的无缝转换。同时,函数计算平台被推荐为MCP Server的理想运行时,因其具备自动弹性扩缩容、高安全性和按需计费等优势。最后,展望了MCP技术演进方向及对AI基础设施普及的推动作用,强调函数计算助力MCP大规模落地,加速行业创新。
本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。