官方博客-第3页-阿里云开发者社区

  • 2024-08-15
    1893

    MySQL实现并发控制的过程

    数据库系统到底是怎么进行并发访问控制的?本文以 MySQL 8.0.35 代码为例,尝试对 MySQL 中的并发访问控制进行整体介绍。

    1,893
  • 594

    拥抱Data+AI|解码Data+AI助力游戏日志智能分析

    「拥抱Data+AI」系列第2篇:阿里云DMS+AnalyticDB助力游戏日志数据分析与预测

  • 2023-10-17
    1463

    使用ECS部署并使用Docker

    本文介绍如何在云服务ECS实例上,部署并使用Docker。

  • 2024-06-28
    920

    深度|大模型时代下,基于湖仓一体的数据智能新范式

    本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。

    920
  • 24108

    内附原文|详解SIGMOD’24最佳论文:PolarDB破解多主架构经典难题

    在今年的SIGMOD会议上,阿里云瑶池数据库团队的论文《PolarDB-MP: A Multi-Primary Cloud-Native Database via Disaggregated Shared Memory》获得了Industry Track Best Paper Award,这是中国企业独立完成的成果首次摘得SIGMOD最高奖。PolarDB-MP是基于分布式共享内存的多主云原生数据库,本文将介绍这篇论文的具体细节。

  • 2024-08-06
    896

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    896
  • 2024-05-15
    83221

    Ganos H3地理网格能力解析与最佳实践

    本文介绍了Ganos H3的相关功能,帮助读者快速了解Ganos地理网格的重要特性与应用实践。H3是Uber研发的一种覆盖全球表面的二维地理网格,采用了一种全球统一的、多层次的六边形网格体系来表示地球表面,这种地理网格技术在诸多业务场景中得到广泛应用。Ganos不仅提供了H3网格的全套功能,还支持与其它Ganos时空数据类型进行跨模联合分析,极大程度提升了客户对于时空数据的挖掘分析能力。

  • 531

    拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升

    本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。

  • 2024-11-29
    573

    性能提升利器|PolarDB- X 超详细列存查询技术解读

    本文将深入探讨 PolarDB-X 列存查询引擎的分层缓存解决方案,以及其在优化 ORC 列存查询性能中的关键作用。

    573
  • 1
    2
    3
    4
    ...
    19
    到第
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    3/19