官方博客-第6页-阿里云开发者社区

  • 2023-10-07
    1540

    沉浸式学习PostgreSQL|PolarDB 18: 通过GIS轨迹相似伴随|时态分析|轨迹驻点识别等技术对拐卖、诱骗场景进行侦查

    本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.

    1,540
  • 2024-05-15
    113274

    PolarDB-X最佳实践系列(三):如何实现高效的分页查询

    分页查询是数据库中常见的操作。本文将介绍,如何在数据库中(无论是单机还是分布式)高效的进行翻页操作。

  • 2024-05-15
    112845

    浅析MySQL代价估计器

    代价估计是优化其中非常重要的一个步骤,研究代价估计的原理和MySQL的具体实现对做SQL优化是非常有帮助。本文有案例有代码,由浅入深的介绍了代价估计的原理和MySQL的具体实现。

    112,845
  • 2024-05-15
    578

    泛娱乐直播平台的数据库选型和场景解决方案

    直播平台的数据库选型要考虑流量波动、数据规模和实时性需求,如使用Redis的Sorted Set处理实时排行榜,List处理用户关注列表,使用分布式数据库PolarDB-X处理核心业务数据,AnalyticDB进行大数据分析。通过这些技术和策略,直播平台能够应对复杂的业务需求和流量挑战。

    578
  • 2024-08-06
    1373

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,373
  • 679

    如何有效降低产品级内存数据库快照尾延迟

    本文讲解内存键值对数据库在使用 fork 拍摄快照时引起的请求尾延迟激增问题如何解决的实践方案。

  • 2023-07-21
    138758

    如何使用AnalyticDB PostgreSQL 版实现“一站式全文检索”业务

    本文从阿里云用户使用云原生数据仓库AnalyticDB PostgreSQL版(以下简称ADB PG)的实际体验出发,介绍ADB PG如何实现“一站式全文检索”业务,并详细阐述ADB PG使用的优势技术,最后提供对应业务案例分析。

    138,758
  • 1966

    众安保险 CDP 平台:借助阿里云数据库 SelectDB 版内核 Apache Doris 打破数据孤岛,人群圈选提速4倍

    随着业务在金融、保险和商城领域的不断扩展,众安保险建设 CDP 平台以提供自动化营销数据支持。早期 CDP 平台依赖于 Spark + Impala + Hbase + Nebula 复杂的技术组合,这不仅导致数据分析形成数据孤岛,还带来高昂的管理及维护成本。为解决该问题,众安保险引入 Apache Doris,替换了早期复杂的技术组合,不仅降低了系统的复杂性,打破了数据孤岛,更提升了数据处理的效率。

  • 1
    ...
    5
    6
    7
    ...
    20
    到第
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    6/20