本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.
本系列文章将围绕东南亚头部科技集团的真实迁移历程展开,逐步拆解 BigQuery 迁移至 MaxCompute 过程中的关键挑战与技术创新。本篇为第六篇,MaxCompute SQL语法及函数功能增强。 注:客户背景为东南亚头部科技集团,文中用 GoTerra 表示。
在大数据和大模型的加持下,现代数据技术释放了巨大的技术红利,通过多种数据范式解除了数据的桎梏,使得应用程序达到了“心无桎梏,身无藩篱”的自在境界,那么现代应用有哪些数据范式呢?这正是本文尝试回答的问题。
PolarDB-X 是阿里云推出的云原生分布式数据库,自2021年10月开源以来,持续迭代升级,至2024年4月发布的v2.4.1版本,重点增强了企业级运维能力,如无锁变更、物理扩缩容、数据TTL等,提供金融级高可用、透明分布式、HTAP一体化等特性。PolarDB-X 支持集中式和分布式一体化形态,兼容MySQL生态,适用于金融、通信、政务等行业。
一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。
2023年云栖大会,PolarDB-X 正式发布 2.3.0版本,重点推出PolarDB-X标准版(集中式形态),将PolarDB-X分布式中的DN节点提供单独服务,支持paxos协议的多副本模式、lizard分布式事务引擎,可以100%兼容MySQL。同时在性能场景上,采用生产级部署和参数(开启双1 + Paxos多副本强同步),相比于开源MySQL 8.0.34,PolarDB-X在读写混合场景上有30~40%的性能提升,可以作为开源MySQL的最佳替代选择。
在今年的SIGMOD会议上,阿里云瑶池数据库团队的论文《PolarDB-MP: A Multi-Primary Cloud-Native Database via Disaggregated Shared Memory》获得了Industry Track Best Paper Award,这是中国企业独立完成的成果首次摘得SIGMOD最高奖。PolarDB-MP是基于分布式共享内存的多主云原生数据库,本文将介绍这篇论文的具体细节。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比