176

拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策

本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。

87

拥抱Data+AI|解码Data+AI助力游戏日志智能分析

「拥抱Data+AI」系列第2篇:阿里云DMS+AnalyticDB助力游戏日志数据分析与预测

2024-11-25
39

智能调度、秒级弹性|一文带你探索Compaction Service的进化之路

ADB MySQL的Compaction Service功能通过将Compaction任务从存储节点解耦至独立的弹性资源池执行,解决了资源隔离性弱、并发度低等问题,实现了资源消耗降低50%,任务执行时间平均减少40%,并支持按量付费,提升了系统的稳定性和成本效益。

2024-09-10
190

浅析MySQL Join Reorder算法

本文浅析了MySQL Join Reorder算法的流程,cost计算,剪枝算法等,希望通过本文能帮助大家了解MySQL优化器生成执行计划的具体流程。

190
2024-08-06
567

AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

567
2023-09-13
2216

AnalyticDB PostgreSQL构建一站式实时数仓实践

本文介绍通过 AnalyticDB PostgreSQL 版基于实时物化视图,构建流批一体的一站式实时数仓解决方案,实现一套系统、一份数据、一次写入,即可在数仓内完成实时数据源头导入到实时分析全流程。

2,216
2024-05-15
95623

PolarDB-X 开源 | 基于Paxos的MySQL三副本

PolarDB-X 作为PolarDB分布式版,是阿里巴巴自主设计研发的高性能云原生分布式数据库产品,采用 Shared-nothing 与存储分离计算架构,支持集中式和分布式一体化形态,具备金融级数据高可用、分布式水平扩展、混合负载、低成本存储和极致弹性等能力,坚定以兼容MySQL开源生态构建分布式能力,为用户提供高吞吐、大存储、低延时、易扩展和超高可用的云时代数据库服务。

2023-09-18
47445

一次访问Redis延时高问题排查与总结(2)

本文是一次访问Redis延时高问题排查与总结的续篇,主要讲述了当时没有发现的一些问题和解决方案。

47,445
2024-05-15
328

Java 22 新增利器: 使用 Java Stream Gather 优雅地处理流中的状态

本文中我们分析了 什么 是 “流”,对比了 Java 上几种常见的 “流”库,引入和详细介绍了 Java 22 中的 Stream Gather API 。同时也简单分享了利用虚拟线程 如何简化 Stream map Concurrent操作符的实现。希望抛砖引玉和大家分享新的特性,共同进步。同时也希望大家都可以升级到新版本的 JDK,更好的赋能业务。

328
1
2
3
4
...
18
到第
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
3/18