阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
介绍SLS在可观测数据融合分析的一系列技术升级,融合Trace、全栈监控、Continuous Profiling、移动端监控等功能,帮助大家更快速地构筑全栈、自动化的观测能力。
PolarDB-X 作为PolarDB分布式版,是阿里巴巴自主设计研发的高性能云原生分布式数据库产品,采用 Shared-nothing 与存储分离计算架构,支持集中式和分布式一体化形态,具备金融级数据高可用、分布式水平扩展、混合负载、低成本存储和极致弹性等能力,坚定以兼容MySQL开源生态构建分布式能力,为用户提供高吞吐、大存储、低延时、易扩展和超高可用的云时代数据库服务。
本文主要介绍如何通过使用ECS服务器与npm,结合云效的流水线服务以仓库代码提交为触发方式,进行了基于Vue的Web网页部署。
如果用户发现活跃连接数、cpu 使用率等指标处于高位, 同时慢SQL日志中发现大量记录, 分析得出是大量慢 SQL占用了数据库资源,而且这些慢SQL已经影响到整体核心业务的稳定运行,此时我们需要对其进行限流。
MySQL内存分配与管理总体上分为上中下三篇介绍,本篇为中篇,主要介绍 InnoDB 的内存构成和使用,代码版本主要基于8.0.25。
PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。
论文提出的Flux通过使用AI技术将短时和长时查询解耦进行自动弹性,解决了云数据仓库的性能瓶颈,同时支持了资源按需预留。Flux优于传统的方法,查询响应时间 (RT) 最多可减少75%,资源利用率提高19.0%,成本开销降低77.8%。
MySQL的内存分配、使用、管理的模块较多,本篇文章主要介绍InnoDB层和SQL层内存分配管理器,主要包括ut_allocator、mem_heap_allocator和MEM_ROOT,代码版本主要基于8.0.25。