目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
本文将介绍PolarDB-X对于向量化SIMD指令的探索和实践,包括基本用法及实现原理,以及在具体算子实现中的思考和沉淀。
本文浅析了MySQL Join Reorder算法的流程,cost计算,剪枝算法等,希望通过本文能帮助大家了解MySQL优化器生成执行计划的具体流程。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
介绍SLS在可观测数据融合分析的一系列技术升级,融合Trace、全栈监控、Continuous Profiling、移动端监控等功能,帮助大家更快速地构筑全栈、自动化的观测能力。
PolarDB-X 作为PolarDB分布式版,是阿里巴巴自主设计研发的高性能云原生分布式数据库产品,采用 Shared-nothing 与存储分离计算架构,支持集中式和分布式一体化形态,具备金融级数据高可用、分布式水平扩展、混合负载、低成本存储和极致弹性等能力,坚定以兼容MySQL开源生态构建分布式能力,为用户提供高吞吐、大存储、低延时、易扩展和超高可用的云时代数据库服务。
如果用户发现活跃连接数、cpu 使用率等指标处于高位, 同时慢SQL日志中发现大量记录, 分析得出是大量慢 SQL占用了数据库资源,而且这些慢SQL已经影响到整体核心业务的稳定运行,此时我们需要对其进行限流。