JManus 是一个以 Java 为核心、完全开源的 OpenManus 实现,隶属于 Spring AI Alibaba 项目。它旨在让 Java 程序员更便捷地使用 AI 技术,支持多 Agent 框架、网页配置 Agent、MCP 协议和 PLAN-ACT 模式。项目在 GitHub 上已获近 3k star,可集成多个大模型如 Claude 3.5 和 Qwen3。开发者可通过 IDE 或 Maven 快速运行项目,体验智能问答与工具调用功能。欢迎参与开源共建,推动通用 AI Agent 框架发展。
本文旨在从 MCP 的技术原理、降低 MCP Server 构建复杂度、提升 Server 运行稳定性等方面出发,分享我们的一些实践心得。
随着 AI 技术的飞速发展,MCP(模型上下文协议) 逐渐崭露头角。这项由 Anthropic 公司(Claude 的创造者)于 2024 年 11 月推出的开放协议,正在重新定义 AI 与数字世界的交互方式。这项开放协议不仅让 AI 突破传统对话边界,更赋予其执行现实任务的能力,堪称人工智能向"行动智能体"进化的里程碑。然而从火热概念到落地业务,MCP 还需要找到云端“好搭档”。
ComfyUI 是一款基于节点工作流稳定扩散算法的全新 WebUI,相对于传统的 WebUI,ComfyUI 的部署和学习曲线较陡峭,函数计算基于 Serverless 应用中心开发“ComfyUI 应用模版”,简化开发者的部署流程,帮助简单、快捷实现全新而精致的绘画体验,点击本文查看一键部署 ComfyUI 的方法。
淘天集团数据开发团队基于Fluss构建新一代实时数仓,解决数据消费冗余、探查困难及大State运维难题。Fluss融合列存与实时更新能力,支持列裁剪、KV点查、Delta Join及湖流一体,显著降低IO与计算资源消耗,提升作业稳定性与数据探查效率。已在淘天AB实验平台落地,覆盖搜索、推荐等核心业务,通过618大促验证,实现千万级流量、秒级延迟,资源消耗降低30%,State缩减超100TB。未来将持续深化湖仓架构,拓展AI场景应用。
本文介绍如何使用Serverless Devs CLI工具从零开发并一键部署MCP Server到阿里云函数计算(FC)。首先通过初始化MCP Server项目,完成本地代码编写,利用Node.js实现一个简单的Hello World工具。接着对代码进行打包,并通过Serverless Devs工具将项目部署至云端。部署完成后,提供三种客户端接入方式:官方Client、其他本地Client及在FC上部署的Client。最后可通过内置大模型的inspector测试部署效果。Serverless Devs简化了开发流程,提升了MCP Server的构建效率。
本次方案将帮助大家实现使用阿里云产品函数计算FC,只需简单操作,就可以快速配置ComfyUI大模型,创建出你的专属毛茸茸萌宠形象。内置基础大模型+常用插件+部分 Lora,以风格化图像生成只需用户让体验键配置简单方便,后续您可以根据自己的需要更换需要的模型、Lora、增加插件。
随着业务和产品的发展、团队的不断扩大,很多团队都不可避免的会遇到需求流程混乱的问题。虽然有的团队也编写了一些“需求流程规范”的文档,但最终却流于纸面,难以在团队真正落地。如何科学制定并有效落实需求管理规范呢?对此,云效产品经理陈逊进行了非常详细的直播分享,本文是他经验的文字总结。