在数字化转型的大潮中,云计算成为推动创新和优化业务流程的关键力量。作为阿里巴巴集团的核心产品之一,函数计算(Function Compute)引领着 Serverless 计算的新时代。本文将深入探讨函数计算如何通过技术革新实现提效降本,以及其在 AI 业务、数据处理和 Web 应用等多个领域的广泛应用。
性能优化是降低成本的手段之一,每年大促前业务平台都会组织核心链路上的应用做性能优化,一方面提升系统性能,另外一方面对腐化的代码进行清理。本文结合业务平台性能优化的经验,探讨一下性能优化的思路及常用工具及手段。
本文中我们分析了 什么 是 “流”,对比了 Java 上几种常见的 “流”库,引入和详细介绍了 Java 22 中的 Stream Gather API 。同时也简单分享了利用虚拟线程 如何简化 Stream map Concurrent操作符的实现。希望抛砖引玉和大家分享新的特性,共同进步。同时也希望大家都可以升级到新版本的 JDK,更好的赋能业务。
本文从“空间”这一维度,聊一聊PolarDB-X在跨空间部署能力上的不断发展和延伸,以及在不同空间范围下的高可用和容灾能力,并着重介绍一下最新的产品能力——GDN(Global Database Network)。
本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
代价估计是优化其中非常重要的一个步骤,研究代价估计的原理和MySQL的具体实现对做SQL优化是非常有帮助。本文有案例有代码,由浅入深的介绍了代价估计的原理和MySQL的具体实现。
小熊油耗在进行架构升级时,进行了广泛的市场调研,深入分析了国内多家云服务商。经过对比多种 IaaS 层云主机方案及 Serverless 产品的部署策略,他们最终选择了阿里云Serverless 应用引擎 SAE。小熊油耗认为,阿里云能给他们提供更强的安全感,安全感来自于阿里云是一个更大的平台:历史最悠久,用户最多、产品最丰富、配套工具众多、技术支持体系成熟,阿里云 SAE,不仅在稳定性上表现卓越,在细粒度的成本控制和极致的弹性能力上表现也非常出色,而且免运维,完美契合了小熊油耗作为一家细分领域小而美的公司的需求。
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.