本文主要记录了自己通过查阅相关资料,一步步排查问题,最后通过优化Docerfile文件将docker镜像构建从十几分钟降低到1分钟左右,效率提高了10倍左右。
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
本文介绍了阿里云容器服务(ACK)支持的StrmVol存储卷方案,旨在解决Kubernetes环境中海量小文件访问性能瓶颈问题。通过虚拟块设备与内核态文件系统(如EROFS)结合,StrmVol显著降低了小文件访问延迟,适用于AI训练集加载、时序日志分析等场景。其核心优化包括内存预取加速、减少I/O等待、内核态直接读取避免用户态切换开销,以及轻量索引快速初始化。示例中展示了基于Argo Workflows的工作流任务,模拟分布式图像数据集加载,测试结果显示平均处理时间为21秒。StrmVol适合只读场景且OSS端数据无需频繁更新的情况,详细使用方法可参考官方文档。
云效流水线可以托管用户的私网环境内的机器,并将构建任务调度到这些机器上,从而确保整个构建过程,和代码库和制品库的交互在私网环境下进行。
Flow-CLI 使用的典型场景如:自定义开发一个 Sonar 扫描步骤,以在流水中触发 Sonar 扫描,并以扫描结果作为红线卡点,以保证代码质量;对接三方自有审批平台,在发布前进行检查审批,审批通过才允许发布。接下来,我们就以对接 Sonar 服务为例,手把手教你开发一个带红线功能的 Sonar 扫描步骤。
本文从一个通用的客户问题出发,描述了一个问题如何从前置排查到使用AI Profiling进行详细的排查,最后到问题定位与解决、业务执行过程的分析,从而展现一个从黑箱到透明的精细化的剖析过程。
本文旨在对 Istio Ambient Mesh 的流量路径进行详细解读,力求尽可能清晰地呈现细节,以帮助读者完全理解 Istio Ambient Mesh 中最为关键的部分。
本文介绍了在云原生场景下,AIGC 模型服务的工程挑战和Fluid 在云原生 AIGC 模型推理场景的优化。