在大数据和大模型的加持下,现代数据技术释放了巨大的技术红利,通过多种数据范式解除了数据的桎梏,使得应用程序达到了“心无桎梏,身无藩篱”的自在境界,那么现代应用有哪些数据范式呢?这正是本文尝试回答的问题。
如何基于向量数据库+LLM(大语言模型),打造更懂你的企业专属Chatbot。
金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做ETL的数据清洗跑批等。
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
本文的目的是帮助你了解如何设计轨迹表, 如何高性能的写入、查询、分析轨迹数据.
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑