本文旨在对 Istio Ambient Mesh 的流量路径进行详细解读,力求尽可能清晰地呈现细节,以帮助读者完全理解 Istio Ambient Mesh 中最为关键的部分。
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
今天分享一下,基于阿里云函数计算 FC 以及 CAP(云应用开发平台),极速托管专属的 CosyVoice 应用。并且我们提供了 API 调用方案以及镜像构建源码方便您根据自己的业务任意 DIY。
JManus 是面向 Java 的企业级通用智能体框架,支持多 Agent 框架、MCP 协议和 PLAN-ACT 模式,具备高可用、弹性伸缩的特性。结合阿里云 Serverless 运行时 SAE 和 FC,实现稳定安全的智能体应用部署与运行。
对于众多开发者而言,Serverless 架构的核心优势在于其能够无缝集成多种云产品与组件,从而使得开发者可以更加专注于核心业务逻辑和创新。此外,Serverless 架构还提供了按量付费的灵活计费模式,进一步降低了资源成本。使用云应用开发平台 CAP,在 AI 领域,企业就可以专注于模型训练、算法优化等关键任务,让 AI 应用的开发、部署以及全生命周期的管理更加简单。可以预见 Serverless 技术将催生一系列创新且有趣的应用,而这些应用将不断拓展 AI 技术的边界。
将 Qwen2.5 模型部署于函数计算 FC,用户能依据业务需求调整资源配置,有效应对高并发场景,并通过优化资源配置,如调整实例规格、多 GPU 部署和模型量化来提升推理速度。此外,函数计算支持多样化 GPU 计费模式(按需计费、阶梯定价、极速模式),可根据业务需求调整,在面对高频请求和大规模数据处理时,能够显著降低综合成本。
当代AI来势汹汹,本文从AI的特点、对研发的挑战、AI的应用工程和场景分化等剖析了AI时代的应用工程化架构演进之路。
在单体的应用开发场景中涉及并发同步时,大家往往采用Synchronized(同步)或同一个JVM内Lock机制来解决多线程间的同步问题。而在分布式集群工作的开发场景中,就需要一种更加高级的锁机制来处理跨机器的进程之间的数据同步问题,这种跨机器的锁就是分布式锁。接下来本文将为大家分享分布式锁的最佳实践。