写这篇文章的初衷:作为一个AI小白,把我自己学习大模型的学习路径还原出来,包括理解的逻辑、看到的比较好的学习材料,通过一篇文章给串起来,对大模型建立起一个相对体系化的认知,才能够在扑面而来的大模型时代,看出点门道。
本期文章,我们将向大家展示如何使用AgentScope中构建和使用具有RAG功能的智能体,创造AgentScope助手群,为大家解答和AgentScope相关的问题。
本文主要介绍如何基于阿里云百炼平台快速在10分钟为您的网站添加一个 AI 助手。我们基于阿里云百炼平台的能力,以官方帮助文档为参考,搭建了一个以便全天候(7x24)回应客户咨询的AI助手,介绍了相关技术方案和主要代码,供开发者参考。
本文介绍了将社区主流STDIO MCP Server一键转为企业内可插拔Remote MCP Server的方法,以及存量API智能化重生的解决方案。通过FunctionAI平台模板实现STDIO MCP Server到SSE MCP Server的快速部署,并可通过“npx”或“uvx”命令调试。同时,文章还探讨了如何将OpenAPI规范数据转化为MCP Server实例,支持API Key、HTTP Basic和OAuth 2.0三种鉴权配置。该方案联合阿里云百练、魔搭社区等平台,提供低成本、高效率的企业级MCP Server服务化路径,助力AI应用生态繁荣。
Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。
通过重构核心类,将 `HashMap<Long, HashSet<String>>` 优化为 `Long2ObjectOpenHashMap<int[]>`,结合数据分布特征与紧凑存储,JVM 堆内存从 3.13GB 降至 211MB,降幅达 94%,验证了高效数据结构在海量场景下的巨大价值。