官方博客-第7页-阿里云开发者社区

  • 2025-01-08
    1837

    阿里云百炼xWaytoAGI共学课 DAY2 - 更好用的文本知识库应用跟学,快速上手阿里云百炼

    本课程是阿里云百炼平台的第二天课程内容,旨在帮助用户了解如何通过阿里云百炼构建和发布自己的AI应用。介绍了如何利用大模型和智能体应用来创建具备强大语言理解和生成能力的AI助手,并通过不同的渠道(如网站、钉钉、微信公众号等)发布这些应用。

    1,837
  • 2025-02-28
    1387

    使用A10单卡24G复现DeepSeek R1强化学习过程

    本文描述DeepSeek的三个模型的学习过程,其中DeepSeek-R1-Zero模型所涉及的强化学习算法,是DeepSeek最核心的部分之一会重点展示。

    1,387
  • 2024-09-05
    1210

    RAG效果优化:高质量文档解析详解

    本文关于如何将非结构化数据(如PDF和Word文档)转换为结构化数据,以便于RAG(Retrieval-Augmented Generation)系统使用。

    1,210
  • 2025-04-01
    3627

    RAG 调优指南:Spring AI Alibaba 模块化 RAG 原理与使用

    通过遵循以上最佳实践,可以构建一个高效、可靠的 RAG 系统,为用户提供准确和专业的回答。这些实践涵盖了从文档处理到系统配置的各个方面,能够帮助开发者构建更好的 RAG 应用。

    3,627
  • 2024-05-15
    118227

    阿里云PAI大模型RAG对话系统最佳实践

    本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。

    118,227
  • 2024-10-29
    1650

    AI 辅助编程的效果衡量

    本文主要介绍了如何度量研发效能,以及 AI 辅助编程是如何影响效能的,进而阐述如何衡量 AI 辅助编程带来的收益。

    1,650
  • 2025-04-10
    757

    AI Infra之模型显存管理分析

    本文围绕某线上客户部署DeepSeek-R1满血版模型时进行多次压测后,发现显存占用一直上升,从未下降的现象,记录了排查过程。

    757
  • 334

    为什么说多模态是推荐系统破局的关键?来自饿了么一线的实战复盘

    推荐系统作为互联网时代连接用户与信息的核心技术,正在经历从传统协同过滤向多模态智能推荐的重要变革。随着深度学习技术的快速发展,特别是大语言模型和多模态预训练技术的成熟,推荐系统开始从单纯依赖用户行为ID特征转向充分利用商品图像、文本描述等丰富内容信息的新范式。

    334
  • 2025-04-11
    1457

    AI开源框架:让分布式系统调试不再"黑盒"

    Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。

  • 1
    ...
    6
    7
    8
    ...
    26
    到第
    7/26