本文关于如何将非结构化数据(如PDF和Word文档)转换为结构化数据,以便于RAG(Retrieval-Augmented Generation)系统使用。
Hey,小伙伴!你是不是总是下定了学习编程的决心,但又因为枯燥、困难打起了退堂鼓?今天让我们跟着通义灵码边玩边练,只需要简单的几句话,就可以打造一款经典的数字华容道小游戏,即使没有代码基础也能快速上手,也许在这个过程中,你不经意间就掌握了一些编程知识。让我们开始吧!
数字时代的大潮中,编程不再高深莫测,而是每个人都可以尝试并享受的乐趣。今天,就让我们一起探索如何利用通义灵码的自然语言生成代码功能,轻松打造你的专属健康管理小程序,说不定在这个过程中,不管是身材管理,还是编程学习,都能让你离目标更近一步。
年会中的抽奖环节不可或缺,但每年为了选择合适的抽奖小程序,团队往往需要投入大量时间和精力。然而,抽奖结束后,参与者通常只记得自己是否中奖,其他细节多被遗忘。在 AI 技术日益成熟的今天,如何打造一个既高效又有技术含量的抽奖应用呢?今天,就让我们跟随通义灵码,仅用 5 分钟现场手撕一个抽奖应用吧!
Flow-CLI 使用的典型场景如:自定义开发一个 Sonar 扫描步骤,以在流水中触发 Sonar 扫描,并以扫描结果作为红线卡点,以保证代码质量;对接三方自有审批平台,在发布前进行检查审批,审批通过才允许发布。接下来,我们就以对接 Sonar 服务为例,手把手教你开发一个带红线功能的 Sonar 扫描步骤。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
prompt工程不需要复杂的编程知识,人人都可以使用prompt工程成为AI大师。本文只探讨prompt工程,不涉及模型训练等内容。只讨论文本生成,不涉及图像等领域。