区别于传统的流水线工具,本实验将带你体验云效应用交付平台 AppStack,从应用视角,完成一个 AI 聊天应用的高效交付。
阿里云通义灵码团队与重庆大学合作的研究论文被 FSE Industry 2024 (CCF A) 录用,该论文通过对阿里云开发的智能编码插件进行实证调查,主要探讨了在智能编码助手中的代码搜索问题,点击本文查看论文详解。
近年来,针对网站的攻击形式愈发多样,手段也变得更加隐蔽,使用浏览器拨测来监控服务的整个生命周期有助于及时发现攻击,保护核心业务链路不受损。阿里云监控浏览器拨测使用真实的浏览器进行拨测,通过提供丰富的断言能力和脚本录制能力护航服务的全生命周期和核心业务链路,助力开发者更好地监控服务的可用性,消除潜在风险。
我借助通义灵码完成了 obdiag 项目的第一个 PR,成为了 obdiag 项目的 contributor,我知道通义灵码的能力还远没有发挥出来,今后继续探索,未来可期。
本文介绍了OLAP分析在大数据分析中的位置,分析并介绍目前大数据OLAP遇到的分析性能、资源隔离、高可用、弹性扩缩容等核心问题,解析阿里云Hologres是如何解决极致性能、弹性、业务永续、性价比等核心刚需的最佳实践,介绍阿里云Hologres弹性计算组在弹性计算、资源隔离上的探索和创新。
针对问题咨询场景中出现大量相关领域的问题,PAI提供了智能客服对话系统解决方案,以降低客户等待时间和人工客服成本。本文以汽车售前咨询业务领域为例,介绍如何基于人工智能算法,快速构建智能客服对话系统。
随着企业业务云化进程逐渐进入深水区,简单地使用云上资源出入公网已经无法满足业务的诉求,安全、成本、权限、监控等诉求的迭代,需要企业有系统性地视角来考虑如何做好公网出入口(DMZ)的规划设计。
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。