本文将介绍MaxCompute在半结构化数据方面的一些思考与创新,围绕半结构化数据简析、传统方案优劣对比、MaxCompute半结构化数据解决方案、收益分析。
Mistral AI在3月24日突然发布并开源了 Mistral 7B v0.2模型,有如下几个特点
本文是普适性的经验分享,并非按规范局限在 JavaScript 前端视角 做出的总结,除JavaScript外还深入结合了ActionScript 3.0、PHP、C / C++、Basic非纯粹OOP领域语言的经验。
本文介绍了一家零售企业如何利用SelectDB进行BI分析及数据服务API的查询。通过Dataphin的数据集成、SQL研发等功能,将CRM、ERP等系统数据汇聚加工,并推送至SelectDB构建销售数据集市层,以支持报表分析及API查询。SelectDB具备实时、统一、弹性及开放特性,适用于多种实时分析场景。文章详细描述了在Dataphin中集成SelectDB的整体方案、数据源配置、数据集成、数据开发及数据服务流程。
本文将从两个常见的大模型翻车问题入手解析这些问题背后体现的大模型技术原理,并解释了为什么会导致这些问题,接着我们利用CoT(思维链)方法解决这些问题并基于上述原理试图剖析CoT方法起作用的可能原因,最后提出【理由先行】风格这一简单有效的Prompt Trick。
为了构建现代化的可观测数据采集器LoongCollector,iLogtail启动架构通用化升级,旨在提供高可靠、高可扩展和高性能的实时数据采集和计算服务。然而,通用化的过程总会伴随性能劣化,本文重点介绍LoongCollector的性能优化之路,并对通用化和高性能之间的平衡给出见解。
针对问题咨询场景中出现大量相关领域的问题,PAI提供了智能客服对话系统解决方案,以降低客户等待时间和人工客服成本。本文以汽车售前咨询业务领域为例,介绍如何基于人工智能算法,快速构建智能客服对话系统。
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。