通过遵循以上最佳实践,可以构建一个高效、可靠的 RAG 系统,为用户提供准确和专业的回答。这些实践涵盖了从文档处理到系统配置的各个方面,能够帮助开发者构建更好的 RAG 应用。
Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。
本文作者基于自身在RAG技术领域长达半年的实践经验,分享了从初识RAG的潜力到面对实际应用挑战的心路历程,以及如何通过一系列优化措施逐步解决这些挑战的过程。
在本文中,我们将详细介绍两种在业务中实践的优化策略:多轮对话间的 KV cache 复用技术和投机采样方法。我们会细致探讨这些策略的应用场景、框架实现,并分享一些实现时的关键技巧。
阿里云开源 Spring AI Alibaba,旨在帮助 Java 开发者快速构建 AI 应用,共同构建物理新世界。
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
Qwen3-Coder 是通义千问最新开源的 AI 编程大模型正式开源,拥有卓越的代码和 Agent 能力,在多领域取得了开源模型的 SOTA 效果。PAI 已支持最强版本 Qwen3-Coder-480B-A35B-Instruct 的云上一键部署。
本文关于如何将非结构化数据(如PDF和Word文档)转换为结构化数据,以便于RAG(Retrieval-Augmented Generation)系统使用。