随着大模型能力越来越强大,利用大语言模型进行智能答疑已经成为了一个非常普遍和常见的场景。然而,各个产品或业务方要能够准确有效地进行答疑,仅依靠大模型的通用能力是远远不够的,这时候利用私有领域FAQ文档进行大模型的检索增强生成往往可以有效解决上述问题。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。
prompt工程不需要复杂的编程知识,人人都可以使用prompt工程成为AI大师。本文只探讨prompt工程,不涉及模型训练等内容。只讨论文本生成,不涉及图像等领域。
在特定场景下编写模板的流程比较固定,本篇文章以《部署单点 WordPress 博客平台》为例,讲述如何完成一个部署成功率高、适配场景广的模板。大多数在 ECS 上部署应用的模板都可以参考此教程来编写。
WordPress 是流行的开源CMS,阿里云的ROS(Resource Orchestration Service)提供模板化部署服务,简化云上环境如VPC、ECS、MySQL的创建。用户可通过ROS控制台选择模板一键部署WordPress,配置包括实例区、类型、系统盘及密码等参数。ROS模板定义了资源、参数和输出,自动处理依赖关系,实现云资源和应用的自动化部署。通过ROS,用户可以高效管理和更新整个资源栈,实现快速、可靠的云服务部署。