为了高效地发现、定位和解决预发问题,闲鱼团队研发了一套异常日志问题自动追踪-定位-分发机制。这套机制通过自动化手段,实现了异常日志的定时扫描、精准定位和自动分发,显著降低了开发和测试的成本,提高了问题解决的效率。
本次分享意在帮助用户更加全面、深入地了解百炼的核心产品能力,并通过实际操作学会如何快速将大模型与自己的系统及应用相结合。主要包括以下三个方面: 1. 阿里云百炼产品定位和能力简介 2. 知识检索 RAG 智能体应用能力和优势 3. 最佳落地案例实践分享
vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。
本文将介绍MaxCompute在半结构化数据方面的一些思考与创新,围绕半结构化数据简析、传统方案优劣对比、MaxCompute半结构化数据解决方案、收益分析。
在当今 GPT 技术盛行的时代,大模型推动了向量检索技术的迅猛发展。向量检索相较于传统的基于关键词的检索方法,能够更精准地捕捉数据之间的语义关系,极大提升了信息检索的效果。特别是在自然语言处理、计算机视觉等领域,向量能够将不同模态的数据在同一空间中进行表达和检索,推动了智能推荐、内容检索、RAG 和知识库等应用的广泛普及。阿里云表格存储(Tablestore)的多元索引提供了向量检索能力。表格存储是一款 Serverless 的分布式结构化数据存储服务,诞生于 2009 年阿里云成立时,主要特点是分布式、Serverless 开箱即用、按量付费、水平扩展和查询功能丰富和性能优秀等。
本文深入探讨当前最前沿的prompt engineering方案,结合OpenAI、Anthropic和Google等大模型公司的资料,以及开源社区中宝贵的prompt技巧分享,全面解析这一领域的实践策略。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
基于PAI-DSW快速启动Stable Diffusion WebUI,创作你的专属冬日主题AI画作!