近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。
阿里云存储产品高级解决方案架构师欧阳雁(乐忱)分享了中国企业在全闪存高端存储市场的快速增长,指出AI大模型的发展推动了企业级存储市场。去年,高端企业级存储闪存占比约为25%,相较于欧美50%的比例,显示出中国在AI领域的巨大增长潜力。演讲涵盖AI业务流程,包括数据预处理、训练和推理的痛点,以及针对这些环节的存储解决方案,强调了稳定、高性能和生命周期管理的重要性。此外,还介绍了数据预处理的全球加速和弹性临时盘技术,训练阶段的高性能存储架构,推理场景的加速器和AI Agent的应用,以及应对大数据业务的存储考量,如对象存储、闪电立方和冷归档存储产品。
从海量的日志数据中,按照各种灵活的条件进行即时查询搜索,是可观测场景下的基本需求。本文介绍了 SLS 新推出的高性能 SPL 日志查询模式,支持 Unix 风格级联管道式语法,以及各种丰富的 SQL 处理函数。同时通过计算下推、向量化计算等优化,使得 SPL 查询可以在数秒内处理亿级数据,并支持 SPL 过滤结果分布图、随机翻页等特性。
作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。
Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。
本文章基于业务实践,总结有关客服质检场景的解决方案和处理经验,为相似场景提供可行的借鉴方法。
写这篇文章的初衷:作为一个AI小白,把我自己学习大模型的学习路径还原出来,包括理解的逻辑、看到的比较好的学习材料,通过一篇文章给串起来,对大模型建立起一个相对体系化的认知,才能够在扑面而来的大模型时代,看出点门道。
本文从模型架构、并行策略、通信优化和显存优化四个方面展开,深入分析了DeepSeek-V3高效训练的关键技术,探讨其如何以仅5%的算力实现对标GPT-4o的性能。