iLogtail 作为日志、时序数据采集器,在 2.0 版本中,全面支持了 SPL 。本文对处理插件进行了梳理,介绍了如何编写 SPL 语句,从插件处理模式迁移到 2.0 版本的 SPL 处理模式,帮助用户实现更加灵活的端上数据处理。
vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。
阿里云发布的QwQ-32B模型通过强化学习显著提升了推理能力,核心指标达到DeepSeek-R1满血版水平。用户可通过阿里云系统运维管理(OOS)一键部署OpenWebUI+Ollama方案,轻松将QwQ-32B模型部署到ECS,或连接阿里云百炼的在线模型。整个过程无需编写代码,全部在控制台完成,适合新手操作。
金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做ETL的数据清洗跑批等。
本文的目的是帮助你了解如何设计轨迹表, 如何高性能的写入、查询、分析轨迹数据.
本文主要介绍Ganos实时热力聚合查询并动态输出热力瓦片能力,依托阿里云PolarDB PostgreSQL产品、ADB PostgreSQL和RDS PostgreSQL 三款数据库建设输出。
随着业务在金融、保险和商城领域的不断扩展,众安保险建设 CDP 平台以提供自动化营销数据支持。早期 CDP 平台依赖于 Spark + Impala + Hbase + Nebula 复杂的技术组合,这不仅导致数据分析形成数据孤岛,还带来高昂的管理及维护成本。为解决该问题,众安保险引入 Apache Doris,替换了早期复杂的技术组合,不仅降低了系统的复杂性,打破了数据孤岛,更提升了数据处理的效率。