安全事件和事件管理(security information and event management,SIEM)通过对来自各种数据源安全事件的收集和分析,来实现威胁检测、安全事件管理和合规性检测。SIEM是在安全信息管理(SIM)——收集、分析并报告日志数据,与安全事件管理(SEM)——实时分析日志和事件数据以提供威胁监视、事件关联和事件响应的基础上发展而来的。本文为您介绍如何基于SLS平台与日志审计构建Cloud SIEM方案。
本文主要介绍如何使用CloudLens for SLS定位和解决iLogtail日常使用中的常见问题之一:iLogtail异常重启问题。
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
某网站主体位于AWS,经营视频直播/点播以及其他互联网衍生业务,面向广大的海外手机端客户。目前已经在使用阿里云的VOD SDK,并将主要视频数据存放于S3。现需要将业务从AWS S3迁移至阿里云OSS。
目标读者数字化系统开发运维(DevOps)工程师、稳定性工程师(SRE)、可观测平台运维人员等。背景介绍日志的形式往往多种多样,如果只是简单的读入日志数据,将很难进行搜索、分析及可视化。将原始的日志数据解析为结构化的数据,将大幅提升数据的可用性,方便用户进行快捷的“字段-值”的查询和分析。最基础的解...