本文提供一种相对Sidecar部署更轻量级的采集方式,只需要部署少量的Logtail容器,即可采集不同业务容器的日志。
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
为了展现 LoongCollector 的卓越性能,本文通过纵向(LoongCollector 与 iLogtail 产品升级对比)和横向(LoongCollector 与其他开源日志采集 Agent 对比)两方面对比,深度测评不同采集 Agent 在常见的日志采集场景下的性能。
本文写给有一定编程基础的学习者,得以入门 源码级 开发Agentscope应用,并上线创空间,参加AgentScope的应用开发挑战赛。
SDCon 全球软件技术大会上,阿里云通义灵码团队分享了关于 AI 辅助编码的最新研究与实践,随着 AIGC 技术的发展,软件研发领域将迎来智能化的新高度,助力 DevOps 流程优化,提升研发效率和研发幸福感。
本系列文章是组内写给新人和实习生的 TCP入门系列教程,结合了理论和实践,本篇为第二篇,建议先读上篇《通过实验深入了解TCP 连接的建立和关闭》。