本文探讨了 Manus 智能体的设计及其与传统智能体的差异,重点分析了 CodeAct 机制对智能体执行效率的提升。作者通过《基于LLM的数据仓库》实验反思了交互接口选择的重要性,并提出操作系统和文件系统作为良好的自反馈交互系统。文章进一步结合 GitOps 和持续集成(CICD)理念,设计了一种低成本、可观测性强的智能体运行方案,包括计划智能体(Planner)和执行智能体(Executor)的协作流程。通过实际案例对比,展示了 GitOps 智能体与 Manus 的相似效果,并总结了其在记忆增强、推理可观测性、低成本部署及跨环境适配等方面的优势。最后提供了相关代码路径和参考材料。
本文聚焦 LoongSuite 生态核心组件 LoongCollector,深度解析 LoongCollector 在智算服务中的技术突破,涵盖多租户观测隔离、GPU 集群性能追踪及事件驱动型数据管道设计,通过零侵入采集、智能预处理与自适应扩缩容机制,构建面向云原生 AI 场景的全栈可观测性基础设施,重新定义高并发、强异构环境下的可观测性能力边界。
今天我们这篇文章重点来说一下,对于一个分布式数据库,在异地多活架构中,起到了一个什么样的角色;对于其中的问题,解法是什么。
AnalyticDB PostgreSQL(ADBPG)就是一堆并行的PostgreSQL?当然不是!ADBPG作为一个基于PostgreSQL的Massively Parallel Processing(MPP)全并行架构的分析型数据库,针对数据分析场景在很多方面得到了加强。如双优化器(GPORC...
直播平台的数据库选型要考虑流量波动、数据规模和实时性需求,如使用Redis的Sorted Set处理实时排行榜,List处理用户关注列表,使用分布式数据库PolarDB-X处理核心业务数据,AnalyticDB进行大数据分析。通过这些技术和策略,直播平台能够应对复杂的业务需求和流量挑战。
游戏行业用户流量的引入及长期留存和活跃是衡量游戏商业转化能力的必要条件和重要衡量指标。新游戏投放市场后通常会持续性进行运营推广和迭代优化,需要完善的运营体系来支撑运营。本文重点阐述如何使用云数据库 ClickHouse 作为核心数仓同步离线和实时数据来构建用户分析系统,以及如何通过用户分析系统来分析用户行为常用场景实践案例,指导游戏行业客户构建和使用行为分析系统,达到提高游戏用户留存率和活跃度的目标。
用户画像在市场营销的应用重建中非常常见,已经不是什么新鲜的东西,比较流行的解决方案是给用户贴标签,根据标签的组合,圈出需要的用户。通常画像系统会用到宽表,以及分布式的系统。宽表的作用是存储标签,例如每列代表一个标签。但实际上这种设计不一定是最优或唯一的设计,本文将以PostgreSQL数据库为基础,给大家讲解一下更加另类的设计思路,并且看看效率如何。