本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
本文是[全景剖析容器网络数据链路]第二部分,主要介绍Kubernetes Terway ENI模式下,数据面链路的转转发链路。
本文是[全景剖析容器网络数据链路]第五部分部分,主要介绍Kubernetes Terway ENI-Trunking模式下,数据面链路的转转发链路。
Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。
本文是[全景剖析容器网络数据链路]第三部分,主要介绍Kubernetes Terway ENIIP模式下,数据面链路的转转发链路。
在绿色计算的大背景下,算力分配将朝着更加高效和智能的方向持续演进。本文将介绍阿里妈妈展示广告引擎在全局视角下优化算力分配的新探索,让在线引擎像变形金刚一样灵活强悍。算力在提倡节能减排,降本增效,追求绿色技术的大趋势下,充分利用好算力资源,尤其是在阿里妈妈展示广告引擎这种使用近百万core机器资源的业...
本文是[全景剖析容器网络数据链路]第一部分,主要介绍Kubernetes Flannel模式下,数据面链路的转转发链路