年会中的抽奖环节不可或缺,但每年为了选择合适的抽奖小程序,团队往往需要投入大量时间和精力。然而,抽奖结束后,参与者通常只记得自己是否中奖,其他细节多被遗忘。在 AI 技术日益成熟的今天,如何打造一个既高效又有技术含量的抽奖应用呢?今天,就让我们跟随通义灵码,仅用 5 分钟现场手撕一个抽奖应用吧!
本文介绍了在云原生场景下,AIGC 模型服务的工程挑战和Fluid 在云原生 AIGC 模型推理场景的优化。
Arm 架构的服务器通常具备低功耗的特性,能带来更优异的能效比。相比于传统的 x86 架构服务器,Arm 服务器在相同功耗下能够提供更高的性能。这对于大模型推理任务来说尤为重要,因为大模型通常需要大量的计算资源,而能效比高的 Arm 架构服务器可以提供更好的性能和效率。
本文关于如何将非结构化数据(如PDF和Word文档)转换为结构化数据,以便于RAG(Retrieval-Augmented Generation)系统使用。
本文阐述了阿里云表格存储(Tablestore)如何通过其向量检索服务应对大规模数据检索的需求,尤其是在成本、规模和召回率这三个关键挑战方面。
我借助通义灵码完成了 obdiag 项目的第一个 PR,成为了 obdiag 项目的 contributor,我知道通义灵码的能力还远没有发挥出来,今后继续探索,未来可期。
本文介绍了从Istio+k8s环境迁移到阿里云ASM+ACK环境的渐进式方法,通过配置虚拟服务和入口服务实现新老集群间的服务调用与流量转发,确保业务连续性与平滑迁移
本文介绍了如何结合阿里云百炼和魔笔平台,快速构建一个智能化的专属知识空间。通过利用DeepSeek R1等先进推理模型,实现高效的知识管理和智能问答系统。 5. **未来扩展**:探讨多租户隔离、终端用户接入等高级功能,以适应更大规模的应用场景。 通过这些步骤,用户可以轻松创建一个功能全面、性能卓越的知识管理系统,极大提升工作效率和创新能力。