官方博客-第5页-阿里云开发者社区

  • 2023-08-16
    1300

    MaxCompute ODPS重装上阵:PIVOT/UNPIVOT

    MaxCompute推出新语法 - PIVOT/UNPIVOT:通过PIVOT关键字基于聚合将一个或者多个指定值的行转换为列;通过UNPIVOT关键字可将一个或者多个列转换为行。以更简洁易用的方式满足行转列和列转行的需求,简化了查询语句,提高了广大大数据开发者的生产力。

    1,300
  • 2023-09-13
    2701

    AnalyticDB PostgreSQL构建一站式实时数仓实践

    本文介绍通过 AnalyticDB PostgreSQL 版基于实时物化视图,构建流批一体的一站式实时数仓解决方案,实现一套系统、一份数据、一次写入,即可在数仓内完成实时数据源头导入到实时分析全流程。

    2,701
  • 2023-11-09
    1113

    Dataphin实时研发实践—电商场景下的实时数据大屏构建

    实时数据大屏是实时计算的重要应用场景之一,广泛应用在电商业务中,用于实时监控和分析电商平台的运营情况。通过大屏展示实时的销售额、订单量、用户活跃度、商品热度等数据指标,帮助业务人员随时了解业务的实时状态,快速发现问题和机会。同时,通过数据可视化和趋势分析,大屏也提供了决策支持和优化运营的功能,帮助业务人员做出及时的决策和调整策略,优化电商业务的运营效果。 下面以电商业务为背景,介绍如何构建经典实时数仓,实现实时数据从业务库到ODS层、DWD层、DWS层全链路流转,基于Dataphin和Quick BI实现实时数据大屏。

    1,113
  • 2024-08-06
    1485

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,485
  • 1178

    拥抱Data+AI|解码Data+AI助力游戏日志智能分析

    「拥抱Data+AI」系列第2篇:阿里云DMS+AnalyticDB助力游戏日志数据分析与预测

  • 2024-12-20
    1617

    Redis是如何建立连接和处理命令的

    本文主要讲述 Redis 是如何监听客户端发出的set、get等命令的。

    1,617
  • 2025-03-06
    1529

    一招解决数据库中报表查询慢的痛点

    本文旨在解决传统数据库系统如PostgreSQL在处理复杂分析查询时面临的性能瓶颈问题。

    1,529
  • 森马基于MaxCompute+Hologres+DataWorks构建数据中台

    本次案例主要分享森马集团面对多年自建的多套数仓产品体系,通过阿里云MaxCompute+Hologres+DataWorks统一数仓平台,保障数据生产稳定性与数据质量,减少ETL链路及计算时间,每年数仓整体费用从300多万降到180万。

  • 2024-09-04
    714

    浅谈Elasticsearch的入门与实践

    本文主要围绕ES核心特性:分布式存储特性和分析检索能力,介绍了概念、原理与实践案例,希望让读者快速理解ES的核心特性与应用场景。

  • 1
    ...
    4
    5
    6
    ...
    22
    到第
    5/22