在本文中,我们将详细介绍两种在业务中实践的优化策略:多轮对话间的 KV cache 复用技术和投机采样方法。我们会细致探讨这些策略的应用场景、框架实现,并分享一些实现时的关键技巧。
通过AI技术,即使不编写代码也能高效开发项目。从生成诗朗诵网页到3D游戏创建,这些令人惊叹的操作如今触手可及。经过摸索,我利用AI成功上线了个人站点:https://koi0101-max.github.io/web。无需一行代码,借助强大的工具即可实现创意,让开发变得简单快捷!
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
基于前面三章的铺垫,本章我们将展示大模型Agent的强大能力。我们不仅要实现让大模型同时使用多种查询工具,还要实现让大模型能查询天气情况,最后让大模型自己写代码来查询天气情况。
通过一系列优化,我们将 Paimon x Spark 在 TpcDS 上的性能提高了37+%,已基本和 Parquet x Spark 持平,本文对其中的关键优化点进行了详细介绍。
本文将用通俗易懂的语言,带你从战略(宏观)和战术(微观)两个层次掌握大模型提示词的常见技巧,真正做到理论和实践相结合,占领 AI 运用的先机。
本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。