本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。
在 AI 与云原生融合的趋势下,开发者面临模型协同与云端扩展的挑战。MCP(模型上下文协议)提供统一的交互规范,简化模型集成与服务开发。Function AI 支持 MCP 代码一键上云,提供绑定代码仓库、OSS 上传、本地交付物部署及镜像部署等多种构建方式,助力开发者高效部署智能服务,实现快速迭代与云端协同。
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。