SDCon 全球软件技术大会上,阿里云通义灵码团队分享了关于 AI 辅助编码的最新研究与实践,随着 AIGC 技术的发展,软件研发领域将迎来智能化的新高度,助力 DevOps 流程优化,提升研发效率和研发幸福感。
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
本文将以 MCP Server 在函数计算平台的深度集成为研究载体,解构基于 SSE 长连接通信模型,剖析会话亲和、优雅升级等关键技术,揭示 Serverless 架构在 MCP 场景中的亲和性创新实践。
本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
在这个数字化时代,提供卓越的客户服务已成为企业脱颖而出的关键。为了满足这一需求,越来越多的企业开始探索人工智能(AI)助手的应用,以实现全天候(7x24)的客户咨询响应,全面提升用户体验和业务竞争力。本解决方案通过函数计算FC 和大模型服务平台百炼,为您提供一个高效便捷构建 AI 助手思路。
本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……