检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
本章我们将介绍如何利用大模型开发一个文档比对小工具,我们将用这个工具来给互联网上两篇内容相近但版本不同的文档找找茬,并且我们提供了一种批处理文档比对的方案
本文主要介绍如何基于百炼平台快速在10分钟为您的网站添加一个 AI 助手。我们基于百炼平台的能力,以官方帮助文档为参考,搭建了一个以便全天候(7x24)回应客户咨询的AI助手,介绍了相关技术方案和主要代码,供开发者参考。
数字时代的大潮中,编程不再高深莫测,而是每个人都可以尝试并享受的乐趣。今天,就让我们一起探索如何利用通义灵码的自然语言生成代码功能,轻松打造你的专属健康管理小程序,说不定在这个过程中,不管是身材管理,还是编程学习,都能让你离目标更近一步。
本文首先介绍了遗留代码的概念,并对遗留代码进行了分类。针对不同类型的遗留代码,提供了相应的处理策略。此外,本文重点介绍了通义灵码在维护遗留代码过程中能提供哪些支持。
通过使用“百炼”平台,您可以快速构建一个多代理(Multi-Agent)架构的智能导购助手。该助手能够通过多轮互动了解顾客的具体需求,收集详细信息后,利用“百炼”的知识检索增强功能或已有的商品数据库进行商品搜索,为顾客推荐最合适的产品。