本文主要介绍AI浪潮下的数据安全管理实践,主要分为背景介绍、Access Point、Bucket三个部分
复杂的运行环境、巨大的部署量和高速发展业务迭代对 Agent 的软件工程质量带来了巨大挑战。基于阿里云可观测团队多年的开发和运维经验,本文将分享如何构建和执行可靠性工程策略。
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
在业务场景中,日志数据可能存储在日志服务 Project 的不同 Logstore/MetricStore 中或不同地域的 Project 中。日志服务的数据集(StoreView)功能支持跨地域、跨 Store 联合查询和分析,让用户基于数据集就能高效便捷地查询分析全地域的数据,真正做到数据分析不受地域边界的限制。
本文介绍了从零开始搭建自己的NextCloud个人云盘,包括场景介绍、目标读者、环境准备、操作步骤和方案验证5大方面。
企业构建零信任架构已经成为近年热门的话题之一。本质都是保护企业核心数据安全,防止未经合法授权的数据的访问行为。阿里云SASE依托于阿里云的网络组网优势,为用户提供一个稳定、高效的SD-WAN组网及接入能力,与此同时叠加安全能力。
安全事件和事件管理(security information and event management,SIEM)通过对来自各种数据源安全事件的收集和分析,来实现威胁检测、安全事件管理和合规性检测。SIEM是在安全信息管理(SIM)——收集、分析并报告日志数据,与安全事件管理(SEM)——实时分析日志和事件数据以提供威胁监视、事件关联和事件响应的基础上发展而来的。本文为您介绍如何基于SLS平台与日志审计构建Cloud SIEM方案。
本篇内容为防护(Protection),检测(Detection),恢复(Recovery),响应(Response)实践方案四部曲之一,主要介绍如何结合多产品使用在阿里云国际站做好防护(Protection)部分的安全。