本期文章,我们会介绍一下AgentScope的一个设计哲学(Agent-oriented programming)
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
本方案将运用函数计算 FC,构建一套高可用性的 Web 服务,以满足用户多样化的需求。当用户发起请求时,系统内部会自动将包含文本和提示词的信息传递给百炼模型服务,百炼平台将根据后台配置调用相应的大模型服务,对文本数据进行智能识别与解析,最终将总结结果返回给用户。
推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。
本文将以 MCP Server 在函数计算平台的深度集成为研究载体,解构基于 SSE 长连接通信模型,剖析会话亲和、优雅升级等关键技术,揭示 Serverless 架构在 MCP 场景中的亲和性创新实践。
通义灵码现已全面支持Qwen3,新增智能体模式,具备自主决策、环境感知、工具使用等能力,可端到端完成编码任务。支持问答、文件编辑、智能体多模式自由切换,结合MCP工具与记忆功能,提升开发效率。AI IDE重构编程流程,让开发更智能高效。
Modelscope AgentFabric是一个基于ModelScope-Agent的交互式智能体应用,用于方便地创建针对各种现实应用量身定制智能体,目前已经在生产级别落地。