本文介绍了Spring AI Alibaba MCP的开发与应用,旨在解决企业级AI Agent在分布式环境下的部署和动态更新问题。通过集成Nacos,Spring AI Alibaba实现了流量负载均衡及节点变更动态感知等功能。开发者可方便地将企业内部业务系统发布为MCP服务或开发自己的AI Agent。文章详细描述了如何通过代理应用接入存量业务系统,以及全新MCP服务的开发流程,并提供了完整的配置示例和源码链接。未来,Spring AI Alibaba计划结合Nacos3的mcp-registry与mcp-router能力,进一步优化Agent开发体验。
JManus 是一个以 Java 为核心、完全开源的 OpenManus 实现,隶属于 Spring AI Alibaba 项目。它旨在让 Java 程序员更便捷地使用 AI 技术,支持多 Agent 框架、网页配置 Agent、MCP 协议和 PLAN-ACT 模式。项目在 GitHub 上已获近 3k star,可集成多个大模型如 Claude 3.5 和 Qwen3。开发者可通过 IDE 或 Maven 快速运行项目,体验智能问答与工具调用功能。欢迎参与开源共建,推动通用 AI Agent 框架发展。
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
Spring AI Alibaba Graph 的核心开发已完成,即将发布正式版本。开发者可基于此轻松构建工作流、智能体及多智能体系统,功能丰富且灵活。文章通过三个示例展示了其应用:1) 客户评价处理系统,实现两级问题分类与自动处理;2) 基于 ReAct Agent 的天气预报查询系统,循环执行用户指令直至完成;3) 基于 Supervisor 多智能体的 OpenManus 实现,简化了流程控制逻辑并优化了工具覆盖度。此外,还提供了运行示例的方法及未来规划,欢迎开发者参与贡献。
无论是使用 Nacos-Controller 实现配置的双向同步,还是直接在应用中接入 Nacos SDK 以获得更高级的配置管理特性,都能显著提升配置管理的灵活性、安全性和可维护性。使用 Nacos,您能够更好地管理和优化您的应用配置,从而提高系统的稳定性和可靠性。
AI 应用开发中,总有一些让人头疼的问题:敏感信息(比如 API-KEY)怎么安全存储?模型参数需要频繁调整怎么办?Prompt 模板改来改去,每次都得重启服务,太麻烦了!别急,今天我们就来聊聊如何用 Nacos 解决这些问题。
是否还记得 2022 年 K8s Ingress Nginx 披露了的 3 个高危安全漏洞(CVE-2021-25745, CVE-2021-25746, CVE-2021-25748),并在那一年宣布停止接收新功能 PR,专注修复并提升稳定性。