本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
在今年的SIGMOD会议上,阿里云瑶池数据库团队的论文《PolarDB-MP: A Multi-Primary Cloud-Native Database via Disaggregated Shared Memory》获得了Industry Track Best Paper Award,这是中国企业独立完成的成果首次摘得SIGMOD最高奖。PolarDB-MP是基于分布式共享内存的多主云原生数据库,本文将介绍这篇论文的具体细节。
为应对分布式云多集群监控的挑战,阿里云可观测监控 Prometheus 版结合 ACK One,凭借高效纳管与全局监控方案有效破解了用户在该场景的监控运维痛点,为日益增长的业务需求提供了一站式、高效、统一的监控解决方案,实现成本与运维效率的双重优化。助力企业的数字化转型与业务快速增长,在复杂多变的云原生时代中航行,提供了一个强有力的罗盘与风帆。
论文提出的Flux通过使用AI技术将短时和长时查询解耦进行自动弹性,解决了云数据仓库的性能瓶颈,同时支持了资源按需预留。Flux优于传统的方法,查询响应时间 (RT) 最多可减少75%,资源利用率提高19.0%,成本开销降低77.8%。
区别于传统的流水线工具,本实验将带你体验云效应用交付平台 AppStack,从应用视角,完成一个 AI 聊天应用的高效交付。
本文将演示结合云效 AppStack,来看下如何在阿里云 ACK 集群上进行应用的 Ingress 灰度发布。
PolarDB已经成为小鹏汽车应对TB级别大表标注、分析查询的"利器"。
日志数据格式可能是多样且复杂的,iLogtail 插件配置模式已经可以很好的支持复杂数据的处理。iLogtail2.0 又带来了 SPL 语法的重大支持,在日志处理场景下,可以通过多级管道对数据进行交互式、递进式的探索和处理,从配置交互和性能上,都有比较大的提升和优化。iLogtail2.0 已经在逐步灰度中,欢迎大家体验和使用。