本文第一部分先介绍 AIGC 对软件研发的根本性影响,从宏观上介绍当下的趋势;第二部分将介绍 Copilot 模式,第三部分是未来软件研发 Agent 产品的进展。
XTuner和魔搭社区(SWIFT)合作引入了一项长序列文本训练技术,该技术能够在多GPU环境中将长序列文本数据分割并分配给不同GPU,从而减少每个GPU上的显存占用。通过这种方式,训练超大规模模型时可以处理更长的序列,提高训练效率。魔搭社区的SWIFT框架已经集成了这一技术,支持多种大模型和数据集的训练。此外,SWIFT还提供了一个用户友好的界面,方便用户进行训练和部署,并且支持评估功能。
云效 Flow 流水线 YAML 引入了 template 语法,支持使用模板语言来动态渲染流水线 YAML,满足多个相同或类似逻辑的 Job 批量配置场景,满足多 Job 按需动态生成场景,帮助降低流水线 YAML 重复代码,灵活编排多任务。
研发规范的目标,是为了解决或降低出现软件危机的风险。但传统流水线受限于工具的定位,无法解决研发规范的落地问题,需要在更高的层面来解决。阿里云云效团队经过内部启发后推出的新产品:云效应用交付平台 AppStack 给出了解决方案,快来使用体验吧!
Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。
本文指导您使用阿里云DevOps工具云效,将Github中托管的代码部署在云服务器ECS中,使得用户能够在互联网公网中访问个人应用服务。文章来自云服务器ECS开发实践征文活动用户投稿,已获得作者(昵称秋天)授权发布。
以Jenkins+Gitlab基于k8s集群实现自建DevOps系统的方式部署开源微服务PiggyMetrics,与云效DevOps对比,介绍真正的免运维,实现高效的业务开发流程。
本文主要以一个Java工程师视角,阐述如何从零(无任何二三方依赖)构建一个极简(麻雀虽小五脏俱全)现代深度学习框架(类比AI的操作系统)。