XTuner和魔搭社区(SWIFT)合作引入了一项长序列文本训练技术,该技术能够在多GPU环境中将长序列文本数据分割并分配给不同GPU,从而减少每个GPU上的显存占用。通过这种方式,训练超大规模模型时可以处理更长的序列,提高训练效率。魔搭社区的SWIFT框架已经集成了这一技术,支持多种大模型和数据集的训练。此外,SWIFT还提供了一个用户友好的界面,方便用户进行训练和部署,并且支持评估功能。
Serverless的理念是即时弹性,用完即走。服务并非长时间运行,这也就意味着像websocket这种长链接的请求模式看起来并不适合Serverless,但是否有其他的办法既能满足长连接模式请求,也能够利用Serverless本身特性呢?答案是肯定的,我们通过API网关来解决webscoket连接的问题,然后由网关触达Serverless服务的后端,本文以弹幕场景为例来介绍如何使用Serverless架构实现全双工通信。
Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。
本文是[全景剖析容器网络数据链路]第一部分,主要介绍Kubernetes Flannel模式下,数据面链路的转转发链路
本方案实现在阿里云Serverless函数计算服务中搭建图片批量打马赛克服务,具备自动将用户上传到OSS桶内的图片批量打上马赛克功能,实现用户敏感信息自动化处理。
Serverless 架构下,虽然我们更多精力是关注我们的业务代码,但是实际上对于一些配置和成本也是需要进行关注的,并且在必要的时候,还需要根据配置与成本进行对我们的 Serverless 应用进行配置优化和代码优化。
我一直都想要有一个漫画版的头像,奈何手太笨,用了很多软件 “捏不出来”,所以就在想着,是否可以基于 AI 实现这样一个功能,并部署到 Serverless 架构上让更多人来尝试使用呢。
本文主要以一个Java工程师视角,阐述如何从零(无任何二三方依赖)构建一个极简(麻雀虽小五脏俱全)现代深度学习框架(类比AI的操作系统)。
prompt工程不需要复杂的编程知识,人人都可以使用prompt工程成为AI大师。本文只探讨prompt工程,不涉及模型训练等内容。只讨论文本生成,不涉及图像等领域。