今天,来自 Qwen1.5 开源家族的新成员,代码专家模型 CodeQwen1.5开源!CodeQwen1.5 基于 Qwen 语言模型初始化,拥有 7B 参数的模型,其拥有 GQA 架构,经过了 ~3T tokens 代码相关的数据进行预训练,共计支持 92 种编程语言、且最长支持 64K 的上下文输入。效果方面,CodeQwen1.5 展现出了优秀的代码生成、长序列建模、代码修改、SQL 能力等,该模型可以大大提高开发人员的工作效率,并在不同的技术环境中简化软件开发工作流程。
本文将用通俗易懂的语言,带你从战略(宏观)和战术(微观)两个层次掌握大模型提示词的常见技巧,真正做到理论和实践相结合,占领 AI 运用的先机。
本文写给有一定编程基础的学习者,得以入门 源码级 开发Agentscope应用,并上线创空间,参加AgentScope的应用开发挑战赛。
2023年10月31日,杭州·云栖大会,阿里云技术主论坛带来了一场关于阿里云主力产品与技术创新的深度解读,阿里云网络产品线负责人祝顺民带来《云智创新,网络随行》的主题发言,针对阿里云飞天洛神云网络(下文简称洛神网络)领域产品服务创新以及背后的技术积累进行了深度解读,不少背后的创新技术系首次重磅披露。
本文为阿里云智能媒体服务IMS「云端智能剪辑」实践指南第6期,从客户真实实践场景出发,分享一些Timeline小技巧(AI_TTS、主轨道、素材对齐),助力客户降低开发时间与成本。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。