
从URL构造到字段提取的正则优化 —— 豆瓣影评的实践记录
本文讲述了作者在爬取豆瓣影评过程中遇到的挑战与解决方案。面对链接结构不统一、字段格式多变等问题,作者通过正则表达式抽象出通用规则,并结合爬虫代理实现稳定采集。最终不仅完成了任务,更收获了“以模式化思维应对变化”的宝贵经验。
Python时间序列平滑技术完全指南:6种主流方法原理与实战应用
时间序列数据分析中,噪声干扰普遍存在,影响趋势提取。本文系统解析六种常用平滑技术——移动平均、EMA、Savitzky-Golay滤波器、LOESS回归、高斯滤波与卡尔曼滤波,从原理、参数配置、适用场景及优缺点多角度对比,并引入RPR指标量化平滑效果,助力方法选择与优化。
Figma桌面客户端下载教程+协作设计入门,小白也能变大神
Figma 是全球领先的云端UI/UX设计工具,支持多人实时协作、矢量图形编辑与原型交互设计。其核心优势包括跨平台同步、团队协作(支持50+成员同时编辑)和丰富的资源生态(集成2000+免费插件)。Figma无需安装,通过浏览器访问官网即可使用。硬件要求最低为4GB内存和5Mbps宽带,推荐配置为8GB+内存和50Mbps+宽带。用户可通过创建团队空间邀请成员,支持邮箱邀请和链接分享。Figma还提供详细的官方学习资源,帮助用户掌握核心功能。

摸鱼必备-80款在线HTML小游戏
本文推荐了80款精彩的HTML5在线小游戏,涵盖益智、冒险、射击、体育等多种类型,适合各年龄段玩家。无需下载安装,随时随地畅玩。地址:[https://game.share888.top/](https://game.share888.top/)
Java“ArrayIndexOutOfBoundsException”解决
Java中的“ArrayIndexOutOfBoundsException”异常通常发生在尝试访问数组的无效索引时。解决方法包括:检查数组边界,确保索引值在有效范围内;使用循环时注意终止条件;对用户输入进行验证。通过这些措施可以有效避免该异常。
PyTorch 与边缘计算:将深度学习模型部署到嵌入式设备
【8月更文第29天】随着物联网技术的发展,越来越多的数据处理任务开始在边缘设备上执行,以减少网络延迟、降低带宽成本并提高隐私保护水平。PyTorch 是一个广泛使用的深度学习框架,它不仅支持高效的模型训练,还提供了多种工具帮助开发者将模型部署到边缘设备。本文将探讨如何将PyTorch模型高效地部署到嵌入式设备上,并通过一个具体的示例来展示整个流程。
Linux(CentOS7.5) 安装部署 Python3.6(超详细!包含 Yum 源配置!)
该指南介绍了在Linux系统中配置Yum源和安装Python3的步骤。首先,通过`yum install`和`wget`命令更新和备份Yum源,并从阿里云获取CentOS和EPEL的repo文件。接着,清理和更新Yum缓存。然后,下载Python3源代码包,推荐使用阿里云镜像加速。解压后,安装必要的依赖,如gcc。在配置和编译Python3时,可能需要解决缺少C编译器的问题。完成安装后,创建Python3和pip3的软链接,并更新环境变量。最后,验证Python3安装成功,并可选地升级pip和配置pip源以提高包下载速度。
基于docker搭建conda深度学习环境(支持GPU加速)
在Ubuntu系统,创建一个docker,然后搭建conda深度学习环境,这样可以用conda或pip安装相关的依赖库了。
使用LangGraph从零构建多智能体AI系统:实现智能协作的完整指南
本文将通过构建AI研究助手的完整案例,展示如何使用LangGraph框架实现这种架构转变,从理论基础到具体实现,帮助你掌握下一代AI系统的构建方法。
想要刻录蓝光光盘吗? 快来了解最好的蓝光刻录软件!
在数字娱乐蓬勃发展的今天,追求高清震撼的视听体验已成为趋势。面对众多高清视频制作工具的选择难题,DVDFab Blu-ray Creator脱颖而出,被誉为最佳蓝光刻录软件。它不仅支持多种视频格式输入(如MP4, MKV)及高清1080p输出,还能制作个性化菜单,兼容不同输出介质(BD-R, BD-RE等)。只需几步即可完成从视频导入到成品输出的全过程,无论是家庭回忆还是专业项目都能完美呈现。
Stable Diffusion 本地部署教程:详细步骤与常见问题解析
【4月更文挑战第12天】本教程详细介绍了如何在本地部署Stable Diffusion模型,包括安装Python 3.8+、CUDA 11.3+、cuDNN、PyTorch和torchvision,克隆仓库,下载预训练模型。配置运行参数后,通过运行`scripts/run_diffusion.py`生成图像。常见问题包括CUDA/CuDNN版本不匹配、显存不足、API密钥问题、模型加载失败和生成质量不佳,可按教程提供的解决办法处理。进阶操作包括使用自定义提示词和批量生成图像。完成这些步骤后,即可开始Stable Diffusion的AI艺术创作。

Hologres揭秘:深度解析高效率分布式查询引擎
从阿里集团诞生到云上商业化,随着业务的发展和技术的演进,Hologres也在持续不断优化核心技术竞争力,为了让大家更加了解Hologres,我们计划持续推出Hologers底层技术原理揭秘系列,从高性能存储引擎到高效率查询引擎,高吞吐写入到高QPS查询等,全方位解读Hologers,请大家持续关注!

基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
Flink 四大基石之窗口(Window)使用详解
在流处理场景中,窗口(Window)用于将无限数据流切分成有限大小的“块”,以便进行计算。Flink 提供了多种窗口类型,如时间窗口(滚动、滑动、会话)和计数窗口,通过窗口大小、滑动步长和偏移量等属性控制数据切分。窗口函数包括增量聚合函数、全窗口函数和ProcessWindowFunction,支持灵活的数据处理。应用案例展示了如何使用窗口进行实时流量统计和电商销售分析。
DataWorks操作报错合集之配置项目连通oss数据源 , 报The request signature we calculated does not match the signature you provided.如何解决
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
Java 基于 DDD 分层架构实战从基础到精通最新实操全流程指南
本文详解基于Java的领域驱动设计(DDD)分层架构实战,结合Spring Boot 3.x、Spring Data JPA 3.x等最新技术栈,通过电商订单系统案例展示如何构建清晰、可维护的微服务架构。内容涵盖项目结构设计、各层实现细节及关键技术点,助力开发者掌握DDD在复杂业务系统中的应用。
MCP+Hologres+LLM搭建数据分析Agent
本文探讨了LLM大模型在数据分析领域的挑战,并介绍了Hologres结合MCP协议和LLM搭建数据分析Agent的解决方案。传统LLM存在实时数据接入能力不足、上下文记忆短等问题,而Hologres通过高性能数据分析能力和湖仓一体支持,解决了这些痛点。MCP协议标准化了LLM与外部系统的连接,提升集成效率。文中详细描述了如何配置Hologres MCP Server与Claude Desktop集成,并通过TPC-H样例数据展示了分析流程和效果。最后总结指出,该方案显著提高了复杂分析任务的实时性和准确性,为智能决策提供支持。
数据平衡与采样:使用 DataLoader 解决类别不平衡问题
【8月更文第29天】在机器学习项目中,类别不平衡问题非常常见,特别是在二分类或多分类任务中。当数据集中某个类别的样本远少于其他类别时,模型可能会偏向于预测样本数较多的类别,导致少数类别的预测性能较差。为了解决这个问题,可以采用不同的策略来平衡数据集,包括过采样(oversampling)、欠采样(undersampling)以及合成样本生成等方法。本文将介绍如何利用 PyTorch 的 `DataLoader` 来处理类别不平衡问题,并给出具体的代码示例。

Vector | Graph:蚂蚁首个开源Graph RAG框架设计解读
引入知识图谱技术后,传统RAG链路到Graph RAG链路会有什么样的变化,如何兼容RAG中的向量数据库(Vector Database)和图数据库(Graph Database)基座,以及蚂蚁的Graph RAG开源技术方案和未来优化方向。
阿里巴巴的通义千问大模型
阿里巴巴通义千问是基于Transformer的大型语言模型,预训练于多样化数据集,支持18亿至720亿参数规模。在多模态英文任务中表现出色,且具备多语言对话及图片文本识别能力。可应用于搜索引擎、问答系统和对话交互,提供智能体验。然而,模型在逻辑题和指令理解上存在不足,需在特定领域进行优化。

FeatHub:流批一体的实时特征工程平台
本次分享中,将介绍 FeatHub,一个由阿里云自研并开源的实时特征平台。我们将介绍 FeatHub 的架构设计,已经完成的工作,以及近期的发展计划。
LangGraph实战:从零构建智能交易机器人,让多个AI智能体像投资团队一样协作
如今的量化交易已远超传统技术指标,迈向多智能体协作的新时代。本文介绍了一个基于 **LangGraph** 构建的多智能体交易系统,模拟真实投资机构的运作流程:数据分析师收集市场情报,研究员展开多空辩论,交易员制定策略,风险团队多角度评估,最终由投资组合经理做出决策。系统具备记忆学习能力,通过每次交易积累经验,持续优化决策质量。
2025 年最新 Java 学习路线图含实操指南助你高效入门 Java 编程掌握核心技能
2025年最新Java学习路线图,涵盖基础环境搭建、核心特性(如密封类、虚拟线程)、模块化开发、响应式编程、主流框架(Spring Boot 3、Spring Security 6)、数据库操作(JPA + Hibernate 6)及微服务实战,助你掌握企业级开发技能。
基于HPC场景的集群任务调度系统LSF/SGE/Slurm/PBS
在HPC场景中,集群任务调度系统是资源管理和作业调度的核心工具。LSF、SGE、Slurm和PBS是主流调度系统。LSF适合大规模企业级集群,提供高可靠性和混合云支持;SGE为经典开源系统,适用于中小规模集群;Slurm成为HPC领域事实标准,支持多架构和容器化;PBS兼具商业和开源版本,擅长拓扑感知调度。选型建议:超大规模科研用Slurm,企业生产环境用LSF/PBS Pro,混合云需求选LSF/PBS Pro,传统小型集群用SGE/Slurm。当前趋势显示Slurm在TOP500系统中占比超60%,而商业系统在金融、制造等领域保持优势。
Flink 三种时间窗口、窗口处理函数使用及案例
Flink 是处理无界数据流的强大工具,提供了丰富的窗口机制。本文介绍了三种时间窗口(滚动窗口、滑动窗口和会话窗口)及其使用方法,包括时间窗口的概念、窗口处理函数的使用和实际案例。通过这些机制,可以灵活地对数据流进行分析和计算,满足不同的业务需求。
Java “SocketException” 错误怎么处理
Java 中的 "SocketException" 错误通常发生在网络通信过程中,如连接失败、断开连接或数据传输异常。处理方法包括检查网络配置、确保服务器正常运行、使用超时设置和重试机制,以及捕获并处理异常。
NLTK模块使用详解
NLTK(Natural Language Toolkit)是基于Python的自然语言处理工具集,提供了丰富的功能和语料库。本文详细介绍了NLTK的安装、基本功能、语料库加载、词频统计、停用词去除、分词分句、词干提取、词形还原、词性标注以及WordNet的使用方法。通过示例代码,帮助读者快速掌握NLTK的核心功能。

【最佳实践】esrally:Elasticsearch 官方压测工具及运用详解
由于 Elasticsearch(后文简称 es) 的简单易用及其在大数据处理方面的良好性能,越来越多的公司选用 es 作为自己的业务解决方案。然而在引入新的解决方案前,不免要做一番调研和测试,本文便是介绍官方的一个 es 压测工具 esrally,希望能为大家带来帮助。
Milvus x n8n :自动化拆解Github文档,零代码构建领域知识智能问答
本文介绍了在构建特定技术领域问答机器人时面临的四大挑战:知识滞后性、信息幻觉、领域术语理解不足和知识库维护成本高。通过结合Milvus向量数据库和n8n低代码平台,提出了一种高效的解决方案。该方案利用Milvus的高性能向量检索和n8n的工作流编排能力,构建了一个可自动更新、精准回答技术问题的智能问答系统,并介绍了部署过程中的可观测性和安全性实现方法。

大语言模型中的归一化技术:LayerNorm与RMSNorm的深入研究
本文分析了大规模Transformer架构(如LLama)中归一化技术的关键作用,重点探讨了LayerNorm被RMSNorm替代的原因。归一化通过调整数据量纲保持分布形态不变,提升计算稳定性和收敛速度。LayerNorm通过均值和方差归一化确保数值稳定,适用于序列模型;而RMSNorm仅使用均方根归一化,省略均值计算,降低计算成本并缓解梯度消失问题。RMSNorm在深层网络中表现出更高的训练稳定性和效率,为复杂模型性能提升做出重要贡献。
Hive 特殊的数据类型 Array、Map、Struct
在Hive中,`Array`、`Map`和`Struct`是三种特殊的数据类型。`Array`用于存储相同类型的列表,如`select array(1, "1", 2, 3, 4, 5)`会产生一个整数数组。`Map`是键值对集合,键值类型需一致,如`select map(1, 2, 3, "4")`会产生一个整数到整数的映射。`Struct`表示结构体,有固定数量和类型的字段,如`select struct(1, 2, 3, 4)`创建一个无名结构体。这些类型支持嵌套使用,允许更复杂的结构数据存储。例如,可以创建一个包含用户结构体的数组来存储多用户信息
【经典论文解读】YOLACT 实例分割(YOLOv5、YOLOv8实例分割的基础)
YOLACT是经典的单阶段、实时、实例分割方法,在YOLOv5和YOLOv8中的实例分割,也是基于 YOLACT实现的,有必要理解一下它的模型结构和设计思路。
构建时序感知的智能RAG系统:让AI自动处理动态数据并实时更新知识库
本文系统构建了一个基于时序管理的智能体架构,旨在应对动态知识库(如财务报告、技术文档)在问答任务中的演进与不确定性。通过六层设计(语义分块、原子事实提取、实体解析、时序失效处理、知识图构建、优化知识库),实现了从原始文档到结构化、时间感知知识库的转化。该架构支持RAG和多智能体系统,提升了推理逻辑性与准确性,并通过LangGraph实现自动化工作流,强化了对持续更新信息的处理能力。

ClickHouse(05)ClickHouse数据类型详解
ClickHouse是一款分析型数据库,支持基础、复合和特殊数据类型。基础类型包括数值(Int、Float、Decimal)、字符串(String、FixedString、UUID)和时间(DateTime、DateTime64、Date)类型。数值类型如Int8-64和Float32-64,Decimal提供高精度计算。字符串中的FixedString有固定长度,UUID作为主键。时间类型最高精度到秒。复合类型有数组、元组、枚举和嵌套,其中数组和元组允许不同数据类型,枚举节省空间,嵌套类型是多维数组结构。特殊类型如Nullable表示可为空,Domain封装IPv4和IPv6。
卡尔曼滤波 KF | 扩展卡尔曼滤波 EKF (思路流程和计算公式)
本文分析卡尔曼滤波和扩展卡尔曼滤波,包括:思路流程、计算公式、简单案例等。滤波算法,在很多场景都有应用,感觉理解其思路和计算过程比较重要。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。