分布式快照算法: Chandy-Lamport
Spark 的 Structured Streaming 的 Continuous Processing Mode 的容错处理使用了分布式快照(Distributed Snapshot)算法 Chandy-Lamport 算法,那么分布式快照算法可以用来解决什么问题呢?
[大数据新手上路]“零基础”系列课程--如何将ECS上的Hadoop数据迁移到阿里云数加·MaxCompute
想用阿里云数加·大数据计算服务(MaxCompute),但是现在数据还在hadoop上,怎么办? 别烦恼,跟着我们走,来一次MaxCompute零基础数据迁移之旅~Let’s Go!
大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《数据加工:用户画像》篇
本手册为阿里云MVP《云计算·大数据:海量日志数据分析与应用》的《数据加工:用户画像》篇而准备。主要阐述在使用大数据开发套件过程中如何将已经采集至MaxCompute上的日志数据进行加工并进行用户画像,学员可以根据本实验手册,去学习如何创建SQL任务、如何处理原始日志数据。
MaxCompute/DataWorks权限问题排查建议
MaxCompute/DataWorks权限问题排查建议 __前提:__MaxCompute与DataWorks为两个产品,在权限体系上既有交集又要一定的差别。在权限问题之前需了解两个产品独特的权限体系。
比自建 Hadoop 还便宜!云栖大会揭秘阿里云数加 MaxCompute
DT时代,越来越多的企业应用数据步入云端。 Hadoop是当下流行的大数据并行计算体系,横向扩展、生态圈成熟等一直是它的主要特点。 阿里云数加MaxCompute (原名ODPS)是一种快速、完全托管的TB/PB级数据仓库解决方案。
助力云上开源生态 - 阿里云开源大数据平台的发展
阿里云E-MapReduce (EMR) 是构建在阿里云云服务器 ECS 上的开源 Hadoop、Spark、HBase、Hive、Flink 生态大数据 PaaS 产品。提供用户在云上使用开源技术建设数据仓库、离线批处理、在线流式处理、即时查询、机器学习等场景下的大数据解决方案。在2019杭州云栖大会大数据生态专场上,阿里巴巴高级产品专家夏立为大家分享了阿里云EMR如何助力云上开源生态。
深入阿里云大数据IDE–MaxCompute Studio
在云栖社区主办的云栖计算之旅第5期–大数据与人工智能分享中,阿里云计算平台高级专家薛明为大家深入地介绍了阿里云大数据IDE–MaxCompute Studio,并对于其特性和背后的技术思想进行了讲解。
关于 Chrome (谷歌浏览器)升级到 80 后可能产生的影响以及解决方案
### 背景 Google 将在2020年**2月4号**发布的 Chrome 80 版本(schedule:[https://www.chromestatus.com/features/schedule](https://www.
细数阿里云服务器的十二种典型应用场景
文章转载:小白杨1990 如今,阿里云的产品可谓是多种多样,纷繁复杂。面对各种各样的技术和产品,ECS、RDS、OSS…等等一系列的东西,很容易让人找不到头绪,尤其是刚刚开始接触网站建设的朋友。阿里云湖北授权服务中心武汉捷讯结合阿里云官网的资料,针对建站相关的内容为大家整理一些阿里云典型的应用场景
Flink SQL 功能解密系列 —— 流计算“撤回(Retraction)”案例分析
通俗讲retract就是传统数据里面的更新操作,也就是说retract是流式计算场景下对数据更新的处理方式。
flume java介绍
近期在做shark flume开发框架的测试,该框架是一个简单高效的面向数据的pipeline框架,采用flume java的思想,实现了一套flume java on MaxCompute的library。为了更好的了解shark自己也去阅读了flume java的paper,这里做一些总结,主要
DataV 支持 token 验证啦!
有很多同学希望把 DataV 创建的数据可视化大屏整合到自己的网站中,我们很早就提供了这样的支持。
Apache Flink 漫谈系列(04) - State
实际问题 在流计算场景中,数据会源源不断的流入Apache Flink系统,每条数据进入Apache Flink系统都会触发计算。如果我们想进行一个Count聚合计算,那么每次触发计算是将历史上所有流入的数据重新新计算一次,还是每次计算都是在上一次计算结果之上进行增量计算呢?答案是肯定的,Apache Flink是基于上一次的计算结果进行增量计算的。
【X-Pack解读】阿里云Elasticsearch X-Pack 监控组件功能详解
阿里云Elasticsearch集成了Elastic Stack商业版的X-Pack组件包,包括安全、告警、监控、报表生成、图分析、机器学习等组件,用户可以开箱即用。本文将对X-Pack 的监控组件功能进行详细解读。
【大数据新手上路】“零基础”系列课程--如何通过大数据开发套件Data IDE玩转大数据
老板每天都要出这些业务数据(销售总额、总交易量、总点击次数、总加入购物车次数、总加入收藏夹次数...),我得想个一劳永逸的方法了…
【大数据开发套件调度配置实践】——不同周期任务依赖配置
大数据开发过程中常遇到不同运行周期的任务进行依赖,常见**天任务依赖小时任务**、**小时任务依赖分钟任务**。那么如何通过大数据开发套件开发这两种场景呢? 本文将从这两个场景出发,结合调度依赖/参数/调度执行等,介绍不同周期调度依赖的最佳操作实践。
2019北京Elastic开发者大会日程重磅上线 | 由阿里云联合赞助
2019年度Elastic中国开发者大会(北京)是由Elastic官方在中国举办的第三次开发者大会。阿里云作为Elasticsearch云上生态的主要推动者,很荣幸作为本次大会战略级合作伙伴参与其中,届时将和Elastic技术社区联合发布《Elasticsearch中国开发者报告》。
阿里巴巴大数据实践之数据建模
随着DT时代互联网、智能设备及其他信息技术的发展,数据爆发式增长,如何将这些数据进行有序、有结构地分类组织和存储是我们面临的一个挑战。 为什么需要数据建模 如果把数据看作图书馆里的书,我们希望看到它们在书架上分门别类地放置;如果把数据看作城市的建筑,我们希望城市规划布局合理;如果把数据看作电脑文件和文件夹,我们希望按照自己的习惯有很好的文件夹组织方式,而不是糟糕混乱的桌面,经常为找一个文件而不知所措。
E-MapReduce大数据安全实践
E-MapReduce从EMR-2.7.x/EMR-3.5.x版本开始支持创建安全类型的集群,即集群中的开源组件以Kerberos的安全模式启动,在这种安全环境下只有经过认证的客户端(Client)才能访问集群的服务(Service,如HDFS)。
【阿里云网站日志分析实践】通过Log Service日志服务导入MaxCompute分析
日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用非常简单。用户只需要完成2步配置即可以把日志服务Logstore的日志数
阿里云大数据开发套件 新手不得不面对的问题(持续更新)
概念 大数据开发套件(Data IDE) 是阿里云数加重要的Paas平台产品,是”DataWorks”中最重要的核心组件。提供全面托管的工作流服务,一站式开发管理的界面,帮助企业专注于数据价值的挖掘和探索。
【大数据技术干货】阿里云伏羲(fuxi)调度器FuxiMaster功能简介(一) 多租户(QuotaGroup)管理
转载自xingbao 各位好,这是介绍阿里云伏羲(fuxi)调度器系列文章的第一篇,今天主要介绍多租户(QuotaGroup)管理的实现 一、FuxiMaster简介 FuxiMaster和Yarn非常相似,定位于分布式系统中资源管理与分配的角色:一个典型的资源分配流程图如下所
【阿里内部应用】基于Blink为新商业调控打造实时大数据交互查询服务
基于Blink为新商业调控打造实时大数据交互查询服务 从IT到DT、从电商到新商业,阿里巴巴的每个细胞都存在大数据的DNA,如何挖掘大数据的价值成为抢占未来先机的金钥匙!传统的大数据开发主要基于离线计算平台MaxCompute(ODPS)进行天级别、小时级别的批量数据分析,但近些年随着618、99.
美甲帮:玩转指甲上的大数据平台
美甲帮APP目前有几百万的用户,然而不同用户喜好和动机不同,譬如是想提升美甲技艺,还是想通过美甲图片选款,或者是想在商城里购买美甲产品,如何挖掘用户需求并以此进行精准化营销或个性化推荐,提升客户体验同时又可以增加收入,这些都是美甲帮最关注的问题。
BasicEngine — 基于DII平台的推荐召回引擎
BasicEngine是阿里巴巴搜索事业部自研的推荐在线召回引擎,依托强大的搜索底层技术支持,可以在线实现复杂的关联排序运算,支持灵活的推荐策略组合,为推荐系统的升级发展拓展了无限想象空间。
MaxCompute Tunnel SDK数据上传利器——BufferedWriter使用指南
MaxCompute 的数据上传接口(Tunnel)定义了数据 block 的概念:一个 block 对应一个 http request,多个 block 的上传可以并发而且是原子的,一次同步请求要么成功要么失败,不会污染其他的 block。这种设计对于服务端来讲十分简洁,但是也把记录状态做 fa.
云栖全程回顾|搜索推荐工程技术专场(附视频与文档)
2019年9月26日在云栖大会《搜索推荐工程技术专场》上,介绍了阿里巴巴搜索推荐与广告,淘系推荐算法云上赋能的分享。基于阿里巴巴十几年搜索与推荐引擎的技术沉淀,承载了包括淘宝、天猫、菜鸟、盒马、钉钉、优酷乃至海外电商在内的整个阿里集团业务,同时由搜索推荐体系支撑起的云产品矩阵已服务于全球的开发者。本次分享邀请到了阿里巴巴搜索和推荐最核心的资深技术专家,为大家带来搜索和推荐领域最前沿、专业、深度的技术内容盛宴。
基于Flink和规则引擎的实时风控解决方案
对一个互联网产品来说,典型的风控场景包括:注册风控、登陆风控、交易风控、活动风控等,而风控的最佳效果是防患于未然,所以事前事中和事后三种实现方案中,又以事前预警和事中控制最好。 这要求风控系统一定要有实时性。
Apache Flink 零基础入门教程(六):状态管理及容错机制
本文主要分享内容如下:状态管理的基本概念;状态的类型与使用示例;容错机制与故障恢复;
Apache Flink 进阶(一):Runtime 核心机制剖析
Flink 的整体架构如图 1 所示。Flink 是可以运行在多种不同的环境中的,例如,它可以通过单进程多线程的方式直接运行,从而提供调试的能力。它也可以运行在 Yarn 或者 K8S 这种资源管理系统上面,也可以在各种云环境中执行。
生态与兼容:MaxCompute大数据生态集成和开发工具
本文PPT来自阿里云数据事业部高级专家薛明/艺卓于10月15日在2016年杭州云栖大会上发表的《MaxCompute大数据生态集成和开发工具》。
基于DataIDE数据集成实现香港ECS上的MySQL数据同步到数加MaxCompute
最近有朋友问,客户在香港ECS上搭建的MySQl,大概有100GB以上的数据,能否通过MaxCompute做海量数据分析,我的回答是YES! 但客户担心香港与大陆之前数据连通性问题,我的回答依然是YES! 为了让更多个客户不再困扰,笔者做了一份教程,可以通过大数据开发套件中的经典网络进行同步数据
使用DataX同步MaxCompute数据到TableStore(原OTS)优化指南
现在越来越多的技术架构下会组合使用MaxCompute和TableStore,用MaxCompute作大数据分析,计算的结果会导出到TableStore提供在线访问。MaxCompute提供海量数据计算的能力,而TableStore提供海量数据高并发低延迟读写的能力。
还在用Hadoop么?Hadoop服务器造成5PB数据泄露,中国、美国受波及最大!
根据John Matherly的说法,不适当地配置HDFS服务器——主要是Hadoop安装——将会泄露超过5PB的信息。John Matherly是用于发现互联网设备的搜索引擎Shodan的创始人。 这位专家说,他发现了4487个HDFS服务器实例,这些服务器可通过公共IP地址获得,而且不需要身份验证。
如何分析及处理 Flink 反压?
反压(backpressure)是实时计算应用开发中,特别是流式计算中,十分常见的问题。反压意味着数据管道中某个节点成为瓶颈,处理速率跟不上上游发送数据的速率,而需要对上游进行限速。
MaxCompute预付费资源监控工具-CU管家使用教程
MaxCompute管家使用前提 1、用户购买了 MaxCompute 预付费CU资源,60CU以上的用户(备注:CU过小无法发挥计算资源及管家的优势)。 2、支持区域,MaxCompute 华北2北京、华东2上海、华南1深圳 3个Region的用户。
数据让生意更简单,网聚宝创业团队利用数加快速打造核心业务竞争力,在激烈的市场竞争中弯道超车。
网聚宝基于阿里云数加及基础云服务等产品,向客户提供全域大数据SaaS应用,向二次开发者、集成商及合作伙伴提供PaaS API以及DaaS API,从而为客户、合作伙伴、集成商、二次开发者进行全面的大数据赋能。
MaxCompute SQL引用第三方Base64JAR实现编解码
我们通过阿里云MaxCompute 和大数据开发套件,引用第三方的Base64 JAR,来实现字符串的编码、解码;
Flink入坑指南 第四章:SQL中的经典操作Group By+Agg
Flink入坑指南系列文章,从实际例子入手,一步步引导用户零基础入门实时计算/Flink,并成长为使用Flink的高阶用户。 简介 Group By + Agg这个最经典的SQL使用方式。Group By是SQL中最基础的分组操作,agg的全称是aggregation(聚合操作),是一类SQL算子的统称,Flink中最常用的Agg操作有COUNT/SUM/AVG等,详情参见Flink支持的聚合操作列表。
云享团——基于大数据开发套件的增量同步策略
转载自云享团 因为近期遇到用户在做ETL操作导入数据到MaxCompute的时候,对如何设置数据同步策略有疑惑,所以今天第一波我们来聊一下数据的同步策略,根据数据的特性,看看哪些数据适合增量同步,哪些适合全量同步,又是如何实现的?请认真看完下面的介绍,这些问题都不是事儿。
从0-1体验大数据开发
觉得裸用MaxCompute(原ODPS)门槛较高?想做数据开发,却苦于没有好的管理工具?想体验Data IDE觉得前期准备工作太长,欢迎进入大数据体验馆,快速开启体验:https://data.aliyun.com/experience
持续创新和改进,为用户创造最大价值,阿里云数加MaxCompute获得C-Tech Awards 2016年度“最具技术创新奖”
“C-Tech Awards 2016最具价值大奖评选”活动已经正式结束。从2016年12月22日线上征集至今,活动获得各大技术行业企业的高度关注,现已有来自国内外的近400家企业参与到了本次评选活动中,并提交了全面的产品简介和创新点解析。
E-MapReduce的HBase集群间迁移
E-MapReduce提供HBase服务,本文介绍了几种HBase集群间迁移的方法
关于举办“天德π客”创业论坛——“基于阿里云的大数据实践—海量日志分析”的通知
随着互联网、云计算、物联网、社交网络等技术的兴起和普及,全球数据的增长快于任何一个时期,可以称作是爆炸性增长。收集大量数据,并在数据中发现趋势,能使企业能够更快、更平稳、更有效地发展。然而,大数据对许多企业和数据专业人员来说,它仍然很难理解,那么,什么是大数据分析?如何利用阿里云数加平台进行海量数据分析,帮助企业更好地利用数据资源?“天德π客”众创空间特举办本期论坛——“基于阿里云的大数据实践——海量日志分析”,邀请华北电力大学电力系统及其自动化博士,阿里云大数据高级认证讲师宋亚奇主讲。
2017云栖大会·杭州峰会:《在线用户行为分析:基于流式计算的数据处理及应用》之《流数据采集:海量流式视频日志收集》篇
2017云栖大会·杭州峰会:《在线用户行为分析:基于流式计算的数据处理及应用》之《流数据采集:海量流式视频日志收集》篇
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。