提升LangChain开发效率:10个被忽视的高效组件,让AI应用性能翻倍
LangChain作为主流大语言模型应用框架,其高级组件常被忽视。本文详解10个高价值但低使用率的核心组件,如语义检索、多模板路由、智能查询转换等,结合技术原理与实践案例,助开发者构建更高效、智能、适应性强的AI系统,提升应用性能与业务价值。
小红书商品详情签名算法Python
本文分享了作者在对接小红书商品详情API过程中的实战经验,涵盖权限申请、签名算法、限流控制、数据解析及Webhook接入等关键技术环节,并附有实用Python代码示例。
Java 大视界 -- 基于 Java 的大数据实时流处理在能源行业设备状态监测与故障预测中的应用(210)
本篇文章探讨了基于 Java 的大数据实时流处理技术在能源行业设备状态监测与故障预测中的应用。文章分析了传统能源设备运维的局限性,如人工巡检效率低、数据处理滞后等问题,并引入 Java 大数据技术作为解决方案。通过实时流处理引擎如 Apache Flink,实现多源异构数据的采集、清洗与异常检测,提升了设备监测的实时性与准确性。同时,文章还介绍了数字孪生、边缘计算等前沿技术的融合应用,并结合国家电网和海上风电场的实际案例,展示了 Java 大数据技术在提升运维效率、降低故障风险和节约成本方面的显著效果。
NSA稀疏注意力深度解析:DeepSeek如何将Transformer复杂度从O(N²)降至线性,实现9倍训练加速
本文将深入分析NSA的架构设计,通过详细的示例、可视化展示和数学推导,构建对其工作机制的全面理解,从高层策略到底层硬件实现均有涉及。
Java 大视界 -- Java 大数据在智能农业温室环境调控与作物生长模型构建中的应用(189)
本文探讨了Java大数据在智能农业温室环境调控与作物生长模型构建中的关键应用。通过高效采集、传输与处理温室环境数据,结合机器学习算法,实现温度、湿度、光照等参数的智能调控,提升作物产量与品质。同时,融合多源数据构建精准作物生长模型,助力农业智能化、精细化发展,推动农业现代化进程。
MoR vs MoE架构对比:更少参数、更快推理的大模型新选择
本文将深入分析递归混合(MoR)与专家混合(MoE)两种架构在大语言模型中的技术特性差异,探讨各自的适用场景和实现机制,并从架构设计、参数效率、推理性能等多个维度进行全面对比。
Java 技术栈企业级应用开发全流程
本指南通过构建企业级电商系统,全面解析现代化Java技术栈实战应用。涵盖Spring Boot 3、微服务架构、云原生部署、服务治理、监控可观测性及AI集成,助开发者掌握全流程开发技能,打造高效可扩展的企业级应用。
Fluss on 鲲鹏 openEuler 大数据实战
本文介绍了基于华为鲲鹏ARM架构服务器与openEuler操作系统,构建包含HDFS、ZooKeeper、Flink、Fluss及Paimon的实时大数据环境的完整实战过程。涵盖了软硬件配置、组件部署、集群规划、环境变量设置、安全认证及启停脚本编写等内容,适用于企业级实时数据平台搭建与运维场景。
淘宝店铺商品API响应数据解析
淘宝店铺商品API是淘宝开放平台的核心接口,支持开发者高效获取店铺内全部商品信息,广泛应用于电商数据分析、竞品监控等场景。相比人工采集,效率提升90%以上。接口支持商品列表查询、多维度筛选、多种排序方式,并可结合其他接口获取扩展信息。本文提供Python请求示例,完整实现签名生成、参数构造和异常处理。
瓴羊入选中国信通院《AI Agent智能体产业图谱》
2025数据智能大会在京召开,中国信通院发布《AI Agent智能体产业图谱1.0》,瓴羊Quick BI凭借智能数据分析能力入选。该图谱系统梳理AI Agent产业生态,涵盖基础底座、平台、通用与行业智能体四大领域。Quick BI通过融合大模型技术,重构企业数据分析方式,实现从“被动响应”到“主动服务”的升级,广泛应用于供应链、零售、财务等多个场景。此次入选标志着瓴羊在数据分析智能体领域的创新成果获高度认可。作为阿里巴巴旗下数智服务品牌,瓴羊将持续推动企业智能化转型,释放数据价值,助力“人工智能+”深度发展。
强化学习算法基准测试:6种算法在多智能体环境中的表现实测
本文系统研究了多智能体强化学习的算法性能与评估框架,选用井字棋和连珠四子作为基准环境,对比分析Q-learning、蒙特卡洛、Sarsa等表格方法在对抗场景中的表现。实验表明,表格方法在小规模状态空间(如井字棋)中可有效学习策略,但在大规模状态空间(如连珠四子)中因泛化能力不足而失效,揭示了向函数逼近技术演进的必要性。研究构建了标准化评估流程,明确了不同算法的适用边界,为理解强化学习的可扩展性问题提供了实证支持与理论参考。
Java Swing 开发的五星级酒店客房预订与管理系统源码
本文介绍了基于Java Swing的酒店管理系统开发方案。系统采用Java Swing构建GUI界面,结合MySQL数据库,实现预订管理、前台服务、客房管理、客户关系维护等功能模块。文章详细展示了登录界面、开房操作等核心功能的代码实现,包括数据验证和业务逻辑处理。该系统具有跨平台性,能有效提升酒店运营效率,为开发者提供GUI设计和数据库开发的实践案例。技术方案涵盖IntelliJ IDEA开发环境、Jform Designer插件辅助设计等工具链,适合中小型酒店管理需求。
跨境卖家必看!2025年1688图片搜索相似商品新功能解锁全球供应链
1688图片搜索商品接口支持通过上传图片查找相似商品,适用于电商选品、竞品分析与供应链溯源。具备高精度匹配与灵活筛选功能,可识别多角度及局部特征,并支持结合类目、价格、起订量等参数过滤结果,提升选品效率与购物体验。
Python 文件操作进阶|使用 shutil 实现高效文件复制
在开发和运维中,处理大量文件是常见需求,如备份配置、归档日志或构建部署包。手动复制粘贴已无法满足高效需求!Python 的 `shutil` 模块提供了强大的文件操作功能,支持单文件复制、目录树迁移及自动化任务构建。本文详解 `shutil.copy()` 基础用法与进阶技巧,如批量复制、自动路径检测、时间戳命名备份等,助你实现高效自动化。结合实战案例(如自动备份系统),让你的代码更专业!学习后,欢迎交流心得,一起精进 Python 技能。关注我,获取更多编程技巧与源码分享!
深入研究:淘宝天猫关键词搜索接口详解
淘宝和天猫提供关键词搜索商品的API接口,支持开发者按关键词获取商品列表及相关数据。功能包括通过搜索关键词(q)返回商品基本信息,如ID、标题、价格、图片、销量等。支持排序(sort)、分页(page_no/page_size)、价格区间筛选(start_price/end_price)及分类搜索(cat)。返回JSON格式数据,含商品ID、标题、价格、图片链接、详情页链接和销量等字段。
让回归模型不再被异常值"带跑偏",MSE和Cauchy损失函数在噪声数据环境下的实战对比
本文探讨了MSE与Cauchy损失函数在线性回归中的表现,特别是在含噪声数据环境下的差异。研究发现,MSE虽具良好数学性质,但对异常值敏感;而Cauchy通过其对数惩罚机制降低异常值影响,展现出更强稳定性。实验结果表明,Cauchy损失函数在处理含噪声数据时参数估计更接近真实值,为实际应用提供了更鲁棒的选择。
HarmonyOS实战:腾讯IM之消息删除、撤回和重发(三)
本文详细介绍了鸿蒙 IM 聊天中实现消息撤回、删除和重发功能的方法。消息撤回支持在 120 秒内召回自己发送的消息,通过 `revokeMessage` 方法实现;消息删除使用 `deleteMessage` 方法清除本地与云端记录;消息重发则先删除失败消息再重新发送,并处理用户被拉黑的异常情况。结合状态管理,可轻松实现类似微信的功能,建议点赞收藏并动手实践!
Quick BI V5.5上线:AI赋能全场景提效,分析决策 “快、准、稳”!
Quick BI 5.5版本应运而生,围绕"AI赋能+全场景提效",助力企业加速释放数据价值。此次升级,不仅让复杂分析"开箱即用",更通过智能工具与场景化能力,助力企业实现从数据洞察到决策落地的全流程闭环。
车辆车型大全 API 实战指南:推动交通行业智能化
车辆车型大全API由探数平台提供,旨在解决企业班车、物流运输及汽车销售等行业对标准化车型数据的需求。传统人工维护车型库效率低且易出错,而该API覆盖主流品牌与车系,包含品牌、车系、销售车型及配置参数等详细信息,适用于车队管理、电商平台及汽车资讯平台。API提供四个子接口:获取品牌、车系、销售车型与配置详情信息,支持高效查询。通过HTTP POST请求即可调用,返回结构化数据,助力企业实现智能化运营与科学决策,在绿色智能交通时代发挥重要作用。
PyTorchVideo实战:从零开始构建高效视频分类模型
本文详细介绍了基于PyTorchVideo和PyTorch Lightning构建视频分类模型的全流程。通过Kinetics数据集,利用3D ResNet-50实现高效动作识别。教程涵盖数据加载与增强、模型构建及训练流程,结合两大框架优势,简化开发复杂度并提升性能,为视频理解任务提供完整解决方案。
1688 商品列表 API 深度拆解:从参数配置到数据获取
1688 是重要的批发采购平台,其商品列表 API 接口为开发者、商家和数据分析人员提供批量获取商品基础信息(如名称、价格、销量等)的能力。该接口支持市场调研、竞品分析等场景,助力商业决策与效率提升。接口基于 HTTPS 协议,采用 GET 或 POST 请求方式,需提供通用参数(如 app_key、timestamp 等)和业务参数(如 category_id、page_no 等)。响应数据以 JSON 格式返回,包含商品详情及分页信息。
人工智能平台 PAI DistilQwen2.5-DS3-0324发布:知识蒸馏+快思考=更高效解决推理难题
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。DistilQwen2.5-DS3-0324 系列模型是基于 DeepSeek-V3-0324 通过知识蒸馏技术并引入快思考策略构建,显著提升推理速度,使得在资源受限的设备和边缘计算场景中,模型能够高效执行复杂任务。实验显示,DistilQwen2.5-DS3-0324 系列中的模型在多个基准测试中表现突出,其32B模型效果接近参数量接近其10倍的闭源大模型。
Dataphin测评:企业级数据中台的「智能中枢」与「治理引擎」
Dataphin是一款智能数据建设与治理平台,基于阿里巴巴OneData方法论,提供从数据采集、建模研发到资产治理、数据服务的全链路智能化能力。它帮助企业解决数据口径混乱、质量参差等问题,构建标准化、资产化、服务化的数据中台体系。本文通过详细的操作步骤,介绍了如何使用Dataphin进行离线数仓搭建,包括规划数仓、数据集成、数据处理、运维补数据及验证数据等环节。尽管平台功能强大,但在部署文档更新、新手友好度及基础功能完善性方面仍有提升空间。未来可引入SQL智能纠错、自然语言生成报告等功能,进一步增强用户体验与数据治理效率。
ReSearch:基于强化学习的大语言模型推理搜索框架
ReSearch是一种创新框架,利用强化学习训练大语言模型执行“推理搜索”,无需监督数据。它将搜索操作融入推理链,通过文本推理决定搜索时机与方式,并用搜索结果引导后续推理。研究显示,ReSearch自然形成高级推理能力,如反思与自我纠正。技术上,采用特定标签封装搜索查询与结果,迭代生成响应。实验基于Qwen2.5等模型,使用MuSiQue数据集训练,在多跳问答任务中显著超越基线模型,展现出强大泛化能力。动态分析表明,模型逐渐学会通过迭代搜索解决复杂问题,奖励指标也呈现稳定增长趋势。
深入研究:1688 拍立淘图片搜索 API 详解
本文介绍了 1688 拍立淘图片搜索 API 的功能与使用方法。该 API 支持开发者通过上传图片,在 1688 平台上搜索相似商品,返回商品标题、价格、销量等信息,适用于电商数据分析和商品推荐等场景。文章详细说明了接口的请求方式(HTTP POST)、参数(如 app_key、timestamp、sign 和 image)及 JSON 响应格式。此外,提供了 Python 请求示例代码,涵盖图片 Base64 编码、签名生成、发送请求及响应处理等步骤,帮助开发者快速集成与调试。
Lalamove基于Flink实时湖仓演进之路
本文由货拉拉国际化技术部资深数据仓库工程师林海亮撰写,围绕Flink在实时数仓中的应用展开。文章首先介绍了Lalamove业务背景,随后分析了Flink在实时看板、数据服务API、数据监控及数据分析中的应用与挑战,如多数据中心、时区差异、上游改造频繁及高成本问题。接着阐述了实时数仓架构从无分层到引入Paimon湖仓的演进过程,解决了数据延迟、兼容性及资源消耗等问题。最后展望未来,提出基于Fluss+Paimon优化架构的方向,进一步提升性能与降低成本。
这插件太危险了!PDFParser自动扒取PDF每天躺赚300+的暴利搬运术
本文介绍了如何使用PHP提取PDF文档中的文字内容。为解决PDF文档“不可编辑”或“文本无法复制”的问题,推荐使用免费的PHP库——PDFParser。通过Composer安装后,可利用其简单强大的API解析PDF文件,提取文本内容。文章详细演示了获取PDF基本信息、全文内容、指定页内容及循环输出每页文本的方法,并附带中英文PDF示例,操作简便实用。
【pytorch】【202504】关于torch.nn.Linear
小白从开始这段代码展示了`nn.Linear`的使用及其背后的原理。 此外,小白还深入研究了PyTorch的核心类`torch.nn.Module`以及其子类`torch.nn.Linear`的源码。`grad_fn`作为张量的一个属性,用于指导反向传播 进一步地,小白探讨了`requires_grad`与叶子节点(leaf tensor)的关系。叶子节点是指在计算图中没有前驱操作的张量,只有设置了`requires_grad=True`的叶子节点才会在反向传播时保存梯度。 最后,小白学习了PyTorch中的三种梯度模式 通过以上学习小白对PyTorch的自动求导机制有了更深刻的理解。
本地部署DeepSeek教程:一键远程访问,还能解决Ollama安全隐患
本教程详细介绍如何使用Ollama+Open WebUI本地部署DeepSeek模型,并借助贝锐花生壳内网穿透实现安全远程访问。首先,安装Ollama并下载DeepSeek模型,根据显存选择合适参数(如4G选1.5B)。接着,通过Docker部署Open WebUI以获得图形化交互界面。最后,利用贝锐花生壳简单三步完成远程访问设置,支持HTTPS加密传输,保障数据安全。整个过程无需云服务器,轻松打造专属AI助手。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。