云栖实录 | MaxCompute 迈向下一代的智能云数仓
2024年云栖大会上,阿里云核心自研云原生智能数据仓库产品MaxCompute,在经过一年的深度打磨后,推出了其迈向下一代智能云数据仓的系列主题分享。此次产品发布,充分展示MaxCompute产品领先行业的云数据产品发展理念与核心优势。
HTML5 Audio(音频)详解
HTML5 通过 `<audio>` 标签简化了网页音频嵌入。本文详细介绍其基本语法与常用属性(如 `controls`、`autoplay`),并通过示例代码展示如何使用 JavaScript 控制音频播放及处理音频事件。此外,还提供了关于浏览器兼容性、自适应设计及无障碍访问的注意事项,助您优化音频体验。
TimeMOE: 使用稀疏模型实现更大更好的时间序列预测
TimeMOE是一种新型的时间序列预测基础模型,通过稀疏混合专家(MOE)设计,在提高模型能力的同时降低了计算成本。它可以在多种时间尺度上进行预测,并且经过大规模预训练,具备出色的泛化能力。TimeMOE不仅在准确性上超越了现有模型,还在计算效率和灵活性方面表现出色,适用于各种预测任务。该模型已扩展至数十亿参数,展现了时间序列领域的缩放定律。研究结果显示,TimeMOE在多个基准测试中显著优于其他模型,特别是在零样本学习场景下。
从基础到高级的 Java 学习资料全面汇总
本文汇总了Java学习的全面资料,涵盖Java基础、面向对象编程、核心知识、高级特性及常用框架,如Spring和Hibernate。内容包括技术详解、代码实例及学习资源推荐,助力从入门到精通Java编程,适合各阶段学习者参考。
Google DeepMind发布MoR架构:50%参数超越传统Transformer,推理速度提升2倍
递归混合架构(MoR)通过自适应令牌级计算机制,在降低参数与计算开销的同时超越传统Transformer性能,显著提升推理效率与内存管理,为大模型发展提供新方向。
数据 + 模型 驱动 AI Native 应用发展
随着人工智能技术的飞速发展,从生成式人工智能(GenAI)到自主代理人工智能(Agentic AI)的演进,企业面临着构建 AI Native 应用的机遇与挑战。本文将深入探讨 AI 开发模式的转变、企业应用的挑战以及技术架构和开发工具的应用,旨在为读者提供一个全面的视角,以理解如何利用数据和模型驱动 AI Native 应用的发展。
淘宝关键词搜索商品列表API接入指南(含Python示例)
淘宝关键词搜索商品列表API是淘宝开放平台的核心接口,支持通过关键词检索商品,适用于比价、选品、市场分析等场景。接口提供丰富的筛选与排序功能,返回结构化数据,含商品ID、标题、价格、销量等信息。开发者可使用Python调用,需注意频率限制与错误处理,建议先在沙箱环境测试。
大模型面经:任务、clip、diffusion
本文简要介绍了文本生成的常见预训练任务(如MLM、CLM、NSP等),多模态模型中的SOTA模型及CLIP的优势,以及多模态大模型如Stable Diffusion的原理。重点解析了Stable Diffusion的扩散机制与图像生成流程,帮助理解其高效性和广泛应用的原因。
springboot项目集成dolphinscheduler调度器 可拖拽spark任务管理
springboot项目集成dolphinscheduler调度器 可拖拽spark任务管理
构建高性能LLM推理服务的完整方案:单GPU处理172个查询/秒、10万并发仅需15美元/小时
本文将通过系统性实验不同的优化技术来构建自定义LLaMA模型服务,目标是高效处理约102,000个并行查询请求,并通过对比分析确定最优解决方案。
机器学习模型监控警报系统设计:Prometheus+Evidently 实战教程
本系统采用Prometheus与Evidently双引擎架构,实现从数据采集、智能分析到精准告警的全流程监控。通过时序数据与模型分析深度集成,支持数据漂移检测、性能评估及根因分析,结合Grafana可视化与Alertmanager智能路由,构建高可用、低延迟的监控体系,显著提升异常检测能力与系统稳定性。
5倍加速!PAI-EAS在线服务优化:ResNet50模型推理性能调优指南
本文系统分析ResNet50推理性能瓶颈,结合TensorRT加速、模型剪枝、批量推理及CUDA多流并行等技术,实现吞吐量提升56.7倍、延迟降低至22ms,同时优化GPU利用率与服务稳定性,提供完整的生产部署验证方案。
Chonkie:面向大语言模型的轻量级文本分块处理库
Chonkie是一个专为大语言模型(LLM)应用场景设计的轻量级文本分块处理库,提供高效的文本分割和管理解决方案。该库采用最小依赖设计理念,特别适用于现实世界的自然语言处理管道。本文将详细介绍Chonkie的核心功能、设计理念以及五种主要的文本分块策略。
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
本文详细介绍了一个简化版 Veo 3 文本到视频生成模型的构建过程。首先进行了数据预处理,涵盖了去重、不安全内容过滤、质量合规性检查以及数据标注等环节。

流批一体向量化引擎Flex
本文整理自蚂蚁集团技术专家刘勇在Flink Forward Asia 2024上的分享,聚焦流批一体向量化引擎的背景、架构及未来规划。内容涵盖向量化计算的基础原理(如SIMD指令)、现有技术现状,以及蚂蚁在Flink 1.18中引入的C++开发向量化计算实践。通过Flex引擎(基于Velox构建),实现比原生执行引擎更高的吞吐量和更低的成本。文章还详细介绍了功能性优化、正确性验证、易用性和稳定性建设,并展示了线上作业性能提升的具体数据(平均提升75%,最佳达14倍)。最后展望了未来规划,包括全新数据转换层、与Paimon结合及支持更多算子和SIMD函数。
DROPP算法详解:专为时间序列和空间数据优化的PCA降维方案
DROPP(Dimensionality Reduction for Ordered Points via PCA)是一种专为有序数据设计的降维方法,通过结合协方差分析与高斯核函数调整,有效融入数据顺序特性。本文详细解析了DROPP的理论基础、实现步骤及其应用。算法核心在于利用相邻元素间的相似性特征,关注局部邻域信息以降低噪声影响,适用于时间序列或空间序列数据。文中通过模拟数据示例展示了算法的具体实现过程,并总结了其在气候研究和分子动力学等领域的广泛应用潜力。
DistilQwen-ThoughtX:变长思维链推理模型,能力超越DeepSeek蒸馏模型
阿里云PAI团队开发的 OmniThought 数据集,其中包含200万思维链,并标注了推理冗余度(RV)和认知难度(CD)分数。基于此数据集,我们还推出了 DistilQwen-ThoughtX 系列模型,可以通过RV和CD分数对思维链进行筛选,训练得到的模型获得根据问题和本身的认知能力,生成变长思维链的能力。同时在 EasyDistill 框架中开源了 OmniThought 数据集和 DistilQwen-ThoughtX 模型的全部权重。这些模型在性能上超过了 DeepSeek-R1-Distill 系列。
业余AI与专业AI的区别,就在这些评估指标上
如何知道你训练的AI模型是天才还是学渣?本文用轻松幽默的方式带你了解机器学习的各类评估指标,让你不仅能说出模型的好坏,还能找到改进的方向,避免在实际应用中翻车。

NLP助力非结构化文本抽取:实体关系提取实战
本文介绍了一套基于微博热帖的中文非结构化文本分析系统,通过爬虫代理采集数据,结合NLP技术实现实体识别、关系抽取及情感分析。核心技术包括爬虫模块、请求配置、页面采集和中文NLP处理,最终将数据结构化并保存为CSV文件或生成图谱。代码示例从基础正则规则到高级深度学习模型(如BERT-BiLSTM-CRF)逐步演进,适合初学者与进阶用户调试与扩展,展现了中文NLP在实际场景中的应用价值。
RAG-MCP:基于检索增强生成的大模型工具选择优化框架
RAG-MCP是一种通过检索增强生成技术解决大型语言模型(LLM)工具选择困境的创新框架。它针对提示词膨胀和决策效率低的问题,利用语义检索动态筛选相关工具,显著减少提示词规模并提升准确率。本文深入解析其技术原理,包括外部工具索引构建、查询时检索处理等核心步骤,以及实验评估结果。RAG-MCP不仅优化了LLM的工具使用能力,还为AI代理的发展提供了重要支持,未来可在极端规模检索、多工具工作流等方面进一步探索。
抖音电商新篇章:douyin.item_video API接口的介绍
抖音视频列表API接口简介:随着短视频发展,抖音成为全球重要平台,其视频数据对开发者、创作者和分析师意义重大。该API支持按关键词、分类等方式获取视频列表,通过HTTP请求(如GET)返回JSON格式数据,包含视频ID、播放量、作者信息等,助力构建推荐系统、分析趋势及挖掘用户行为,实现高效合法的数据利用。
手把手教你调用京东商品详情 API:从申请到数据抓取全流程
京东商品详情API为电商从业者、分析师及开发者提供高效数据支持,助力优化业务与研究。该接口具备丰富数据(商品属性、价格、描述、图片、评价等)与灵活请求方式(GET/POST),满足多样化需求,是数字化时代电商应用开发与分析的有力工具。
通过阿里云Milvus与通义千问VL大模型,快速实现多模态搜索
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
10招立竿见影的PyTorch性能优化技巧,让模型训练速度翻倍
本文系统总结了PyTorch性能调优的关键技术,涵盖混合精度训练、PyTorch 2.0编译功能、推理模式优化、Channels-Last内存格式、图优化与变换、cuDNN基准测试、内存使用优化等多个方面。通过实证测试,文章详细分析了各技术的实现细节、优势及适用场景,如混合精度训练可显著提升计算效率和内存利用率,torch.compile()能自动优化代码生成以加速模型运行。此外,还探讨了推理模式的选择、卷积操作优化及模型构建的最佳实践。这些方法结合良好的编码习惯,有助于开发者构建高效、可扩展的深度学习应用。
AI鱼类识别技术原理及示例代码
本文详细解析了AI鱼类识别的代码示例,涵盖深度学习框架选择、数据集处理、模型构建与训练优化全流程。内容包括技术选型对比(如TensorFlow、PyTorch、YOLO系列)、数据准备流程(开源数据集与标注规范)、完整代码示例(以PyTorch版ResNet50改进模型为例)以及模型优化策略(如量化压缩、知识蒸馏)。此外,还提供了典型应用场景(如渔业资源监测系统)、模型评估指标及开源项目推荐,并针对常见问题(小样本、水下模糊、类别不平衡等)提出解决方案。
谁是AI搜索先锋? Elastic先锋者招募令正式启动!
阿里云 x Elastic 携手推出“Elastic Pioneer”先锋者计划,开发者们可以通过贡献内容获取积分,赢取月度和年度奖励,包括 ElasticON 新加坡站门票及与技术大咖交流机会。
《智能商业分析 Quick BI》初体验
Quick BI 是一款全场景数据消费式的BI平台,用户可制作仪表板、电子表格、大屏及数据门户,并将报表集成到业务流程中分享给同事或合作伙伴,展现了强大的数据展示能力。
时间序列特征提取:18 种高效工具库及其应用分析
时间序列特征提取是数据科学的重要环节,可将原始数据转化为分析价值高的特征表示。本文介绍18个Python库,涵盖通用与专业领域(如医疗、金融)的特征提取工具。这些库包括tsfeatures、tsfresh、librosa等,各自针对特定任务(如预测、分类、异常检测)提供独特功能。通过结合不同库的特点,数据科学家能更高效地进行特征工程,提升模型性能与分析深度。文章总结了各库的优势及适用场景,为实际应用提供了全面指导。
大数据AI一体化开发再加速:DataWorks 支持GPU类型资源
大数据开发治理平台 DataWorks 的Serverless资源组支持GPU资源类型,以免运维、按需付费、弹性伸缩的Serverless架构,将大数据处理与AI开发能力无缝融合。面向大数据&AI协同开发场景,DataWorks提供了交互式开发和分析工具Notebook。开发者在创建个人开发环境时,可以选择GPU类型的资源作为Notebook运行环境,以支持进行高性能的计算工作。本教程将基于开源多模态大模型Qwen2-VL-2B-Instruct,介绍如何使用 DataWorks Notebook及LLaMA Factory训练框架完成文旅领域大模型的构建。
微信公众号接口测试实战指南
微信公众号接口测试是确保系统稳定性和功能完整性的重要环节。本文详细介绍了测试全流程,包括准备、工具选择(如Postman、JMeter)、用例设计与执行,以及常见问题的解决方法。通过全面测试,可以提前发现潜在问题,优化用户体验,确保公众号上线后稳定运行。内容涵盖基础接口、高级接口、微信支付和数据统计接口的测试,强调了功能验证、性能优化、安全保护及用户体验的重要性。未来,随着微信生态的发展,接口测试将面临更多挑战和机遇,如小程序融合、AI应用和国际化拓展。

Vision Transformer中的图像块嵌入详解:线性投影和二维卷积的数学原理与代码实现
本文详细介绍了 Vision Transformer 中图像块嵌入的实现过程,结合理论与代码示例,帮助读者深入理解这一关键机制。

Elasticsearch AI Assistant 集成 DeepSeek,1分钟搭建智能运维助手
Elasticsearch 新支持 DeepSeek 系列模型,使用 AI 助手,通过自然语言交互,为可观测性分析、安全运维管理及数据智能处理提供一站式解决方案。
eBay商品详情接口(ebay API系列)
eBay 商品详情接口是电商从业者、开发者和数据分析师获取商品详细信息的重要工具,涵盖标题、价格、库存、卖家信息等。使用前需在 eBay 开发者平台注册并获取 API 凭证,通过 HTTP GET 请求调用接口,返回 JSON 格式数据。Python 示例代码展示了如何发送请求并解析响应,确保合法合规使用数据。
产品经理-需求层次理论 - AxureMost
需求层次理论由马斯洛提出,将人类需求分为五个层次:生理、安全、社交、尊重和自我实现。该理论在产品设计中广泛应用,指导设计师创造满足用户深层次需求的产品。通过确保基本功能、强化安全、促进社交、提供个性化选项及支持自我实现,产品不仅能提升功能性,还能增强用户的心理满足感和忠诚度。

大语言模型的解码策略与关键优化总结
本文系统性地阐述了大型语言模型(LLMs)中的解码策略技术原理及其应用。通过深入分析贪婪解码、束搜索、采样技术等核心方法,以及温度参数、惩罚机制等优化手段,为研究者和工程师提供了全面的技术参考。文章详细探讨了不同解码算法的工作机制、性能特征和优化方法,强调了解码策略在生成高质量、连贯且多样化文本中的关键作用。实例展示了各类解码策略的应用效果,帮助读者理解其优缺点及适用场景。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。