
LLM高效推理:KV缓存与分页注意力机制深度解析
随着大型语言模型(LLM)规模和复杂性的增长,高效推理变得至关重要。KV缓存和分页注意力是优化LLM推理的两项关键技术。KV缓存通过存储键值对减少重复计算,而分页注意力则通过将序列分割成小块来降低内存消耗,从而有效处理长序列。本文深入剖析这些技术的工作原理及其在仅解码器模型中的应用,探讨其优势与挑战,并展示其实现示例。

Flink Materialized Table:构建流批一体 ETL
本文整理自阿里云智能集团 Apache Flink Committer 刘大龙老师在2024FFA流批一体论坛的分享,涵盖三部分内容:数据工程师用户故事、Materialized Table 构建流批一体 ETL 及 Demo。文章通过案例分析传统 Lambda 架构的挑战,介绍了 Materialized Table 如何简化流批处理,提供统一 API 和声明式 ETL,实现高效的数据处理和维护。最后展示了基于 Flink 和 Paimon 的实际演示,帮助用户更好地理解和应用这一技术。
速卖通商品列表接口(以 AliExpress Affiliate 商品查询 API 为例)
以下是使用 Python 调用速卖通商品列表接口(以 AliExpress Affiliate 商品查询 API 为例)的代码示例。该示例包含准备基础参数、生成签名、发送请求和处理响应等关键步骤,并附有详细注释说明。代码展示了如何通过公共参数和业务参数构建请求,使用 HMAC-SHA256 加密生成签名,确保请求的安全性。最后,解析 JSON 响应并输出商品信息。此接口适用于商品监控、数据采集与分析及商品推荐等场景。注意需通过 OAuth2.0 获取 `access_token`,并根据官方文档调整参数和频率限制。
B 端试用期考核指标
B端产品经理试用期考核指标涵盖了项目策划、用户需求理解、团队协作、技术能力、创新思维、项目管理、产品投放时间、产品质量、产品利润及基础服务接入等方面。这些指标通过自我评估和上级评估相结合的方式进行,分为优秀(5分)到不合格(1分)五个等级。具体内容包括制定合理项目计划、准确把握用户需求、有效沟通协调团队、掌握技术细节、提出创新方案等。实际案例展示了如何通过成功项目实施、解决业务痛点、优化产品功能等方式,全面评估产品经理的综合能力,确保其胜任后续工作任务。

时间序列分析中的状态估计:状态空间模型与卡尔曼滤波的隐状态估计
状态空间模型通过构建生成可观测数据的潜在未观测状态来进行时间序列分析,卡尔曼滤波为其核心,提供实时隐状态估计。本文深入探讨其理论基础与实践应用,涵盖线性及非线性系统的高级滤波算法(如EKF和UKF),并展示在运动目标跟踪等领域的具体应用,强调了参数调优和性能评估的重要性。

深度强化学习实战:训练DQN模型玩超级马里奥兄弟
本文介绍了如何利用深度学习和强化学习技术构建一个能够自主学习并完成《超级马里奥兄弟》游戏的智能系统。通过使用深度Q网络(DQN)架构,智能体在虚拟环境中与游戏进行交互,逐步优化其行为策略。文中详细描述了环境构建、神经网络设计、智能体-环境交互机制等关键步骤,并展示了系统的训练过程和最终表现。该研究不仅展示了强化学习在游戏领域的应用潜力,也为未来的研究提供了宝贵的经验和技术参考。
深度解读面向大模型开发和应用的数据处理套件
本文深入解读了大数据与AI联合场景下的技术,重点探讨了大语言模型、多模态模型训练及应用数据处理。文章首先分析了算法、算力和数据在大模型训练中的重要性,强调数据采集、标注和质量控制的关键作用。接着介绍了PAI平台上的端到端数据处理套件,涵盖预训练、有监督微调和偏好对齐的数据处理流程,以及数据合成和蒸馏技术的应用。最后展望了未来在多模态处理、性能优化和行业解决方案方面的扩展方向。

探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
体育动画直播,观赛的新潮流
体育动画直播利用动画技术和实时数据,生动呈现比赛进程,增强观众参与感。篮球、足球及电竞赛事中,通过动画展示球员轨迹和比赛数据,使观众更直观了解比赛进展。熊猫比分推出的最新版体育动画直播产品,界面可高度定制,支持动画UI和品牌LOGO自定义,云传输技术确保比赛进度领先视频直播,极大提升用户体验。
通过函数计算节点实现GitHub实时数据分析与结果发送
开发人员在基于GitHub开源项目进行开发时会产生海量事件,GitHub会记录每次事件的类型、详情、开发者和代码仓库等信息,并开放其中的公开事件。DataWorks提供“Github十大热门编程语言”模板,通过对GitHub中公开数据集进行加工和分析,并将分析结果以邮箱的方式发送给指定用户。运行本案例后,您将得到Github中Top10编程语言每小时被提交的次数与排行。
静态IP代理的最佳实践如何选择合适的方法
在信息化时代,网络成为生活的重要部分,为保护个人信息安全,使用静态IP代理变得越来越普遍。本文介绍了五种实现静态IP代理的方法:租用服务、自建服务器、云服务、ISP提供及转发代理,帮助用户根据需求选择最合适的方式。

CDC YAML 在阿里云的最佳实践
本文撰写自阿里云开源大数据平台数据通道团队,主要介绍了 Flink CDC YAML 在实时计算Flink版的最佳实践。

Scikit-learn Pipeline完全指南:高效构建机器学习工作流
Scikit-learn管道是构建高效、鲁棒、可复用的机器学习工作流程的利器。通过掌握管道的使用,我们可以轻松地完成从数据预处理到模型训练、评估和部署的全流程,极大地提高工作效率。

解读双编码器和交叉编码器:信息检索中的向量表示与语义匹配
在信息检索领域(即从海量数据中查找相关信息),双编码器和交叉编码器是两种至关重要的工具。它们各自拥有独特的工作机制、优势和局限性。本文将深入探讨这两种核心技术。
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
如何在Windows和Mac上免费将蓝光转换为MKV?
蓝光光盘因能提供高质量的视频和音频内容而备受青睐,但其使用上的局限性却不容忽视。相比之下,MKV作为一种广受支持的视频格式,与大多数播放设备和平台都能完美兼容,为用户带来了更大的便利性和灵活性。
redis数据库超级详细(一)
本文介绍了 Redis 的基础与进阶知识。Redis 是一个使用 ANSI C 编写的开源、支持网络、基于内存、可选持久性的键值对存储数据库,属于 NoSQL 数据库。文章详细讲解了 Redis 的安装、配置、数据类型及其操作,包括字符串、哈希、列表、集合和有序集合等。此外,还提供了 Python 操作 Redis 的示例代码,以及 Redis 在实际应用中的几个典型案例,如 KV 缓存、分布式锁、延迟队列、发布订阅和定时任务等。通过这些内容,读者可以全面了解 Redis 的核心功能和应用场景。
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
使用Python实现个人财务管理工具
本文介绍如何使用Python实现一个简单的个人财务管理工具,包括记录支出和收入、生成财务报告和数据可视化等功能。通过命令行界面输入数据,计算总支出、总收入和净收入,并使用Matplotlib库进行数据可视化。
如何确保API对接过程中的数据安全?
确保API对接过程中的数据安全至关重要。最佳实践包括:使用HTTPS协议、强化身份验证和授权、数据加密、输入验证、访问控制、限流限速、日志记录和监控、安全测试、数据脱敏、错误处理、API网关、Web应用程序防火墙(WAF)、审计和合规性。这些措施能有效提升API的安全性,保护数据免受恶意攻击和泄露风险。
如何从0部署一个大模型RAG应用
本文介绍了如何从零开始部署一套RAG应用,并将其集成到移动端,如钉钉群聊中。应用场景包括客服系统、智能助手、教育辅导和医疗咨询等。通过阿里云PAI和AppFlow,您可以轻松部署大模型RAG应用,并实现智能化的问答服务。具体步骤包括准备向量检索库、训练私有模型、部署RAG对话应用、创建钉钉应用及配置机器人等。
如何查看 RocketMQ 消息的重试次数和时间间隔?
RocketMQ消息重试次数和时间间隔可通过查看消费者和Broker日志、使用管理控制台的监控页面和消息查询功能,或通过分析消费者代码和RocketMQ客户端库代码等方式获取。日志中常有消费失败重试的明确记录,控制台可监控消费情况推断重试状态,代码分析则适合技术用户深入了解。
Selenium中如何实现翻页功能
在使用Python的Selenium库进行网页爬虫开发时,翻页操作是常见需求。本文详细介绍如何通过Selenium实现翻页,包括定位翻页控件、执行翻页动作以及等待页面加载等关键步骤,并提供了基于“下一页”按钮和输入页码两种方式的具体示例代码。此外,还特别提醒开发者注意页面加载完全、动态内容加载及反爬机制等问题,确保爬虫稳定高效运行。
API接口性能优化管理
在数字化时代,API性能优化对于提升软件效率和用户体验至关重要。本文介绍了多种优化方法:配置优化包括调整JVM参数等;代码层面减少重复调用并批量操作数据库;池化技术如线程池和HTTP连接池能有效利用资源;数据库优化通过索引提高查询速度;异步处理则使主流程业务不受阻塞;缓存策略如Redis缓存减少数据库访问;可观测性工具如日志平台和APM帮助监控性能。综合运用这些方法,可根据业务需求持续调整优化,显著提升API性能及用户体验。
数据治理:数据孤岛是企业信息化发展中难以避免的阶段
数据孤岛是企业信息化发展中难以避免的阶段。企业需要正视这一现象,通过完善数据治理体系、加强部门协作、采用先进技术手段等措施,逐步消除数据孤岛,实现数据的有效整合和利用。只有这样,企业才能在激烈的市场竞争中立于不败之地。
CDGA|数据治理新视角:清洗数据,让数据质量飞跃提升
在数据治理中,标准化处理和确保数据的可溯源性是两个重要的方面。通过标准化处理,我们可以将复杂的数据转化为易于管理和分析的形式;通过确保数据的可溯源性,我们可以验证数据的准确性和可靠性。这两个方面共同构成了数据治理的基石,为数据分析和挖掘提供了有力的支持。因此,我们应该重视数据治理工作,不断完善和优化数据治理体系,以应对日益复杂的数据挑战。
TimeMOE: 使用稀疏模型实现更大更好的时间序列预测
TimeMOE是一种新型的时间序列预测基础模型,通过稀疏混合专家(MOE)设计,在提高模型能力的同时降低了计算成本。它可以在多种时间尺度上进行预测,并且经过大规模预训练,具备出色的泛化能力。TimeMOE不仅在准确性上超越了现有模型,还在计算效率和灵活性方面表现出色,适用于各种预测任务。该模型已扩展至数十亿参数,展现了时间序列领域的缩放定律。研究结果显示,TimeMOE在多个基准测试中显著优于其他模型,特别是在零样本学习场景下。
MoR vs MoE架构对比:更少参数、更快推理的大模型新选择
本文将深入分析递归混合(MoR)与专家混合(MoE)两种架构在大语言模型中的技术特性差异,探讨各自的适用场景和实现机制,并从架构设计、参数效率、推理性能等多个维度进行全面对比。
Google DeepMind发布MoR架构:50%参数超越传统Transformer,推理速度提升2倍
递归混合架构(MoR)通过自适应令牌级计算机制,在降低参数与计算开销的同时超越传统Transformer性能,显著提升推理效率与内存管理,为大模型发展提供新方向。

基于DJL的机器学习
本文介绍了基于Java的深度学习框架DJL,涵盖机器学习与深度学习的核心概念、神经网络结构及生命周期,并通过MNIST数据集展示了从模型构建、训练到推理的完整流程。内容深入浅出,适合初学者入门。
数据 + 模型 驱动 AI Native 应用发展
随着人工智能技术的飞速发展,从生成式人工智能(GenAI)到自主代理人工智能(Agentic AI)的演进,企业面临着构建 AI Native 应用的机遇与挑战。本文将深入探讨 AI 开发模式的转变、企业应用的挑战以及技术架构和开发工具的应用,旨在为读者提供一个全面的视角,以理解如何利用数据和模型驱动 AI Native 应用的发展。
淘宝关键词搜索商品列表API接入指南(含Python示例)
淘宝关键词搜索商品列表API是淘宝开放平台的核心接口,支持通过关键词检索商品,适用于比价、选品、市场分析等场景。接口提供丰富的筛选与排序功能,返回结构化数据,含商品ID、标题、价格、销量等信息。开发者可使用Python调用,需注意频率限制与错误处理,建议先在沙箱环境测试。
大模型面经:任务、clip、diffusion
本文简要介绍了文本生成的常见预训练任务(如MLM、CLM、NSP等),多模态模型中的SOTA模型及CLIP的优势,以及多模态大模型如Stable Diffusion的原理。重点解析了Stable Diffusion的扩散机制与图像生成流程,帮助理解其高效性和广泛应用的原因。
springboot项目集成dolphinscheduler调度器 可拖拽spark任务管理
springboot项目集成dolphinscheduler调度器 可拖拽spark任务管理
构建高性能LLM推理服务的完整方案:单GPU处理172个查询/秒、10万并发仅需15美元/小时
本文将通过系统性实验不同的优化技术来构建自定义LLaMA模型服务,目标是高效处理约102,000个并行查询请求,并通过对比分析确定最优解决方案。
5倍加速!PAI-EAS在线服务优化:ResNet50模型推理性能调优指南
本文系统分析ResNet50推理性能瓶颈,结合TensorRT加速、模型剪枝、批量推理及CUDA多流并行等技术,实现吞吐量提升56.7倍、延迟降低至22ms,同时优化GPU利用率与服务稳定性,提供完整的生产部署验证方案。
Chonkie:面向大语言模型的轻量级文本分块处理库
Chonkie是一个专为大语言模型(LLM)应用场景设计的轻量级文本分块处理库,提供高效的文本分割和管理解决方案。该库采用最小依赖设计理念,特别适用于现实世界的自然语言处理管道。本文将详细介绍Chonkie的核心功能、设计理念以及五种主要的文本分块策略。
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
本文详细介绍了一个简化版 Veo 3 文本到视频生成模型的构建过程。首先进行了数据预处理,涵盖了去重、不安全内容过滤、质量合规性检查以及数据标注等环节。

流批一体向量化引擎Flex
本文整理自蚂蚁集团技术专家刘勇在Flink Forward Asia 2024上的分享,聚焦流批一体向量化引擎的背景、架构及未来规划。内容涵盖向量化计算的基础原理(如SIMD指令)、现有技术现状,以及蚂蚁在Flink 1.18中引入的C++开发向量化计算实践。通过Flex引擎(基于Velox构建),实现比原生执行引擎更高的吞吐量和更低的成本。文章还详细介绍了功能性优化、正确性验证、易用性和稳定性建设,并展示了线上作业性能提升的具体数据(平均提升75%,最佳达14倍)。最后展望了未来规划,包括全新数据转换层、与Paimon结合及支持更多算子和SIMD函数。
DROPP算法详解:专为时间序列和空间数据优化的PCA降维方案
DROPP(Dimensionality Reduction for Ordered Points via PCA)是一种专为有序数据设计的降维方法,通过结合协方差分析与高斯核函数调整,有效融入数据顺序特性。本文详细解析了DROPP的理论基础、实现步骤及其应用。算法核心在于利用相邻元素间的相似性特征,关注局部邻域信息以降低噪声影响,适用于时间序列或空间序列数据。文中通过模拟数据示例展示了算法的具体实现过程,并总结了其在气候研究和分子动力学等领域的广泛应用潜力。
DistilQwen-ThoughtX:变长思维链推理模型,能力超越DeepSeek蒸馏模型
阿里云PAI团队开发的 OmniThought 数据集,其中包含200万思维链,并标注了推理冗余度(RV)和认知难度(CD)分数。基于此数据集,我们还推出了 DistilQwen-ThoughtX 系列模型,可以通过RV和CD分数对思维链进行筛选,训练得到的模型获得根据问题和本身的认知能力,生成变长思维链的能力。同时在 EasyDistill 框架中开源了 OmniThought 数据集和 DistilQwen-ThoughtX 模型的全部权重。这些模型在性能上超过了 DeepSeek-R1-Distill 系列。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。