淘宝直播间弹幕API接口(taobao.item_video_barrage)
淘宝直播间弹幕 API(`taobao.item_video_barrage`)用于获取直播间的弹幕数据。通过指定直播间 ID 和模式参数(如 `start` 建立连接、`refresh` 获取弹幕),可以获取弹幕消息列表、直播间信息等。响应数据为 JSON 格式,包含状态码、直播间 ID、连接状态和弹幕详情。使用时需注意权限限制、接口稳定性和数据处理。
/etc/rc.d/rc.local 的作用
/etc/rc.d/rc.local是Linux系统中的一个重要配置文件,其主要作用是在系统启动时执行特定的命令或脚本。以下是关于/etc/rc.d/rc.local的详细解释: ### 作用 * **系统启动任务配置**:该文件允许系统管理员或用户配置在系统启动时需要自动运行的任务。这些任务可以是启动服务、运行特定程序或执行脚本等。 * **开机自启动程序**:通过编辑/etc/rc.d/rc.local文件,用户可以自定义开机启动程序。只需将需要开机启动的程序命令或脚本路径添加到该文件中,并在系统启动时该文件将被自动执行。 ### 文件内容 * 通常包含一个shell脚本,该脚本在
如果API调用失败,我应该如何排查问题?
当小红书API调用失败时,可按以下步骤排查:1. 检查请求参数;2. 确认身份验证凭据;3. 控制调用频率;4. 检查网络连接;5. 查看错误码和日志;6. 核实授权范围;7. 联系技术支持;8. 定期更新与测试。这些方法有助于系统地解决问题,确保API调用稳定。
五、Sqoop 增量导入:精通 Append 与 Lastmodified 模式
在实际业务场景中,数据是不断变化的,怎么用 Sqoop 实现“只拉新增或变化部分”而不是每次全量导入?这一篇就详细讲清楚 Sqoop 增量导入的两种模式(append 和 lastmodified),重点解释 lastmodified 模式下 merge-key 怎么用,配套实战例子和常见坑,讲完你就能搞明白增量同步该怎么配置了。
京东商品 SKU 信息接口(jingdong.ware.sku.get)技术干货:数据拉取、规格解析与字段治理(附踩坑总结 + 可运行代码)
本文详解京东商品SKU接口对接技术,涵盖核心参数、权限申请、签名生成、规格解析及常见坑点解决方案,结合可运行代码与实战经验,助力开发者高效集成SKU数据,实现库存、价格等关键信息精准获取。
Flink基于Paimon的实时湖仓解决方案的演进
本文源自Apache CommunityOverCode Asia 2025,阿里云专家苏轩楠分享Flink与Paimon构建实时湖仓的演进实践。深度解析Variant数据类型、Lookup Join优化等关键技术,提升半结构化数据处理效率与系统可扩展性,推动实时湖仓在生产环境的高效落地。
速卖通商品列表API秘籍!轻松获取商品列表数据
速卖通商品列表API支持关键词搜索、分类筛选、多语言返回及分页排序功能,适用于比价系统、库存监控、市场研究等场景。开发者可快速获取商品数据,构建自动化应用。
Java 实现 SMTP 协议调用的详细示例及实战指南 SMTP Java 调用示例
本文介绍了如何使用Java调用SMTP协议发送邮件,涵盖SMTP基本概念、JavaMail API配置、代码实现及注意事项,适合Java开发者快速掌握邮件发送功能集成。
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
本文将BSSNN扩展至反向推理任务,即预测X∣y,这种设计使得模型不仅能够预测结果,还能够探索特定结果对应的输入特征组合。在二元分类任务中,这种反向推理能力有助于识别导致正负类结果的关键因素,从而显著提升模型的可解释性和决策支持能力。
DistillQwen-ThoughtY:通过变长思维链蒸馏,全面提升模型推理能力!
阿里云 PAI 团队基于 EasyDistill 框架,创新性地采用推理冗余度(RV)和认知难度(CD)双指标筛选机制,实现思维链与模型能力的精准匹配,发布新一代推理模型 DistillQwen-ThoughtY。相关模型和数据集已在 hugging face/ModelScope 等开源社区开放,配套 EasyDistill 框架支持高效知识蒸馏。近期内将推出 DistillQwen-ThoughtY 模型在 PAI-ModelGallery 的一键部署、训练和评测实践。
基于时间图神经网络多的产品需求预测:跨序列依赖性建模实战指南
本文展示了如何通过学习稀疏影响图、应用图卷积融合邻居节点信息,并结合时间卷积捕获演化模式的完整技术路径,深入分析每个步骤的机制原理和数学基础。
核验身份证的一致性API的实战指南
随着网络空间安全问题日益突出,实名制成为保障安全与秩序的重要手段。探数API的身份证实名认证工具通过姓名和身份证号核验用户身份真实性,并返回扩展信息,广泛应用于各行业。本文介绍了其实现功能、调用流程及代码示例,同时解答了关于个人信息安全等常见疑问。接入该API不仅满足合规要求,更能提升用户信任,降低运营风险,共同构建安全高效的数字未来。
开发体育比分网站有哪些坑需要注意
开发体育比分网站需克服多方面挑战:数据来源上避免侵权,选用合法API;实时性上采用WebSocket等技术确保秒级更新;优化用户体验,极简设计配合实时动画;技术架构中使用缓存与微服务应对高并发;SEO方面通过SSR和服务端结构化数据提升搜索流量。示例代码展示了比赛数据的基本处理逻辑,包括设置比赛ID、状态、赢家信息及计划标记等功能。
一文读懂:京东、淘宝、拼多多 API 接口,功能大不同,场景各有招
本文深入解析京东、淘宝、拼多多三大电商巨头的API接口特点与差异。京东API以商品管理、订单处理和物流跟踪见长,适合电商平台及零售商;淘宝API功能丰富,涵盖商品查询、订单管理与用户认证,适用多场景电商业务;拼多多API聚焦社交电商,提供拼团、砍价等特色玩法,助力商家提升曝光与销量。开发者和商家需根据自身需求选择合适的API接口,并关注其安全性与稳定性。随着技术进步,这些API将持续优化,推动电商行业蓬勃发展。
技术革新下的培训新趋势:案例解析
从最初的“试试看”,到如今的“非做不可”,企业培训已经成为央国企和上市公司不可或缺的战略环节。无论是AI与大模型的赋能,DeepSeek,还是具身智能、智算技术和数据科学的实战应用,这些课程都在为企业打开新的可能性。
阿里妈妈基于 Flink+Paimon 的 Lakehouse 应用实践
本文总结了阿里妈妈数据技术专家陈亮在Flink Forward Asia 2024大会上的分享,围绕广告业务背景、架构设计及湖仓方案演进展开。内容涵盖广告生态运作、实时数仓挑战与优化,以及基于Paimon的湖仓方案优势。通过分层设计与技术优化,实现业务交付周期缩短30%以上,资源开销降低40%,并大幅提升系统稳定性和运营效率。文章还介绍了阿里云实时计算Flink版的免费试用活动,助力企业探索实时计算与湖仓一体化解决方案。
淘宝店铺所有商品数据接口全攻略
淘宝开放平台提供`taobao.items.onsale.get`接口,可批量获取店铺在售商品列表,包括商品ID、标题、价格等信息,适用于商品管理、竞品监控等场景。调用流程:注册账号、创建应用、申请权限。核心参数有nick、page_no、page_size等。Python示例代码展示如何通过API获取商品数据,并处理分页和异常。注意事项包括权限申请、频率限制及数据安全。扩展应用如结合商品详情接口进行数据分析。
Flink基于Paimon的实时湖仓解决方案的演进
本文整理自阿里云智能集团苏轩楠老师在Flink Forward Asia 2024论坛的分享,涵盖流式湖仓架构的背景介绍、技术演进和未来发展规划。背景部分介绍了ODS、DWD、DWS三层数据架构及关键组件Flink与Paimon的作用;技术演进讨论了全量与增量数据处理优化、宽表构建及Compaction操作的改进;发展规划则展望了Range Partition、Materialized Table等新功能的应用前景。通过这些优化,系统不仅简化了复杂度,还提升了实时与离线处理的灵活性和效率。
大语言模型的解码策略与关键优化总结
本文系统性地阐述了大型语言模型(LLMs)中的解码策略技术原理及其应用。通过深入分析贪婪解码、束搜索、采样技术等核心方法,以及温度参数、惩罚机制等优化手段,为研究者和工程师提供了全面的技术参考。文章详细探讨了不同解码算法的工作机制、性能特征和优化方法,强调了解码策略在生成高质量、连贯且多样化文本中的关键作用。实例展示了各类解码策略的应用效果,帮助读者理解其优缺点及适用场景。
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
现在最火的AI是怎么应用到体育行业的
AI在体育行业的应用日益广泛,涵盖数据分析、伤病预防、观众体验、裁判辅助等多个领域。通过传感器和可穿戴设备,AI分析运动员表现,提供个性化训练建议;预测伤病风险,制定康复方案;优化比赛预测和博彩指数;提升观众的个性化内容推荐和沉浸式观赛体验;辅助裁判判罚,提高准确性;发掘青训人才,优化训练计划;智能管理场馆运营和票务;自动生成媒体内容,提供实时翻译;支持电竞分析和虚拟体育赛事;并为运动员提供个性化营养和健康管理方案。未来,随着技术进步,AI的应用将更加深入和多样化。
Flink 四大基石之窗口(Window)使用详解
在流处理场景中,窗口(Window)用于将无限数据流切分成有限大小的“块”,以便进行计算。Flink 提供了多种窗口类型,如时间窗口(滚动、滑动、会话)和计数窗口,通过窗口大小、滑动步长和偏移量等属性控制数据切分。窗口函数包括增量聚合函数、全窗口函数和ProcessWindowFunction,支持灵活的数据处理。应用案例展示了如何使用窗口进行实时流量统计和电商销售分析。
解决方案评测|主动式智能导购AI助手构建
阿里云的主动式智能导购AI助手是电商商家提升用户体验和销量的利器。它能实时分析用户行为,提供个性化推荐,支持多渠道无缝对接,并具备语音和文本交互功能。通过注册阿里云账号、开通服务、配置项目、设置推荐策略、集成到平台并测试优化,商家可以轻松部署这一工具。关键代码示例帮助理解API对接和数据处理。建议增强个性化推荐算法、优化交互体验并增加自定义选项,以进一步提升效果。
IM系统在体育直播网站中的重要性
IM(即时通讯)系统在体育直播平台中至关重要,提升用户体验、促进社交互动和增强平台活跃度。它支持实时互动、增强观赛氛围、构建社交网络、推送即时信息、创造商业价值并提供多元化互动体验。高并发性能、实时稳定性和用户安全是实现的关键。通过集成IM系统,平台能更好地满足观众互动需求,提升运营效益。 代码示例展示了如何在比赛数据响应中设置比赛ID、游戏ID、系列赛ID等基本信息,并检查是否有计划和关注标记。
时间序列分析中的互相关与相干性分析:前导-滞后关系的理论基础与实际应用
时间序列数据在现代数据分析中广泛应用,从金融市场到生物医学领域。本文重点介绍两种分析工具:互相关和相干性分析。互相关用于量化两个时间序列的时域关系,揭示前导-滞后关系;相干性分析则评估信号在频率域的相关性,适用于脑电图等研究。通过实际案例和Python代码示例,展示了这两种方法的应用价值。
淘宝店铺所有商品数据接口(Taobao.item_search_shop)
淘宝开放平台提供的 `Taobao.item_search_shop` 接口用于获取指定淘宝店铺的所有商品数据。请求参数包括 `seller_id`(必需)、`page`(可选,默认为1)和 `sort`(可选,排序方式如新品、价格、销量)。响应参数包括商品的唯一标识符、主图URL、标题、价格、销量等。使用步骤包括注册账号、创建应用、获取权限、构建请求、分页获取商品列表和获取商品详细信息。注意遵守调用频率限制和相关法律法规。
使用 rvest 包快速抓取网页数据:从入门到精通
本文介绍了如何使用 R 语言中的 `rvest` 包结合代理 IP 技术,快速抓取新闻网站的数据。以澎湃新闻为例,详细展示了如何配置代理、解析网页结构、提取新闻标题和摘要,并将数据保存为 CSV 文件。通过本教程,读者可以掌握 `rvest` 包的使用方法,提高爬虫抓取效率。
用数学重构 AI的设想:流形注意力 + 自然梯度优化的最小可行落地
本文提出两个数学驱动的AI模块:流形感知注意力(D-Attention)与自然梯度优化器(NGD-Opt)。前者基于热核偏置,在局部邻域引入流形结构,降低计算开销;后者在黎曼流形上进行二阶优化,仅对线性层低频更新前置条件。二者均提供可复现代码与验证路径,兼顾性能与工程可行性,助力几何感知的模型设计与训练。
Go语言深度解析:从入门到精通的完整指南
🌟蒋星熠Jaxonic,Go语言探索者。深耕云计算、微服务与并发编程,以代码为笔,在二进制星河中书写极客诗篇。分享Go核心原理、性能优化与实战架构,助力开发者掌握云原生时代利器。#Go语言 #并发编程 #性能优化
基于springboot的摄影器材租赁回收系统
本系统基于Java、Spring Boot与Vue技术,构建摄影器材租赁回收平台,解决市场不规范、资源浪费等问题。支持在线预约、信用免押、智能评估等功能,提升器材利用率,降低用户成本,推动行业绿色可持续发展。
小红书笔记评论API数据解析(附代码)
本资源介绍如何通过小红书官方API获取笔记评论数据,包含评论内容、用户信息、点赞数等关键字段。支持分页请求,适用于舆情分析、用户研究及市场调研。提供完整Python调用示例,涵盖请求签名、响应解析等核心流程,助力高效获取结构化评论数据。
NVFP4量化技术深度解析:4位精度下实现2.3倍推理加速
本文深入解析NVIDIA推出的NVFP4量化技术,探讨其在Blackwell GPU架构下的性能优势。通过对比主流4位量化方法,分析NVFP4在精度、内存和推理吞吐量方面的表现,结合LLM-Compressor与vLLM框架展示量化与部署实践,验证其在消费级与企业级应用中的高效性与实用性。
数据分布平滑化技术:核密度估计KDE解决直方图不连续问题
核密度估计(KDE)通过平滑处理解决直方图密度估计中的不连续问题,提供连续密度函数。其核心在于使用核函数对数据点进行加权,避免区间划分带来的信息丢失。带宽参数h影响估计效果,过小导致波动大,过大则过度平滑。常用核函数包括高斯核与Epanechnikov核,实际应用中可借助Statsmodels或Seaborn库快速实现。
1688图片搜索API秘籍!轻松获取相似商品数据
1688图片搜索API基于图像识别技术,支持通过上传商品图片搜索同款或相似商品,适用于电商选品、供应链管理等场景。提供多种搜索模式与结果过滤条件,支持Python等开发语言,提升采购效率。
Java 项目实战之实际代码实现与测试调试全过程详解
本文详细讲解了Java项目的实战开发流程,涵盖项目创建、代码实现(如计算器与汉诺塔问题)、单元测试(使用JUnit)及调试技巧(如断点调试与异常排查),帮助开发者掌握从编码到测试调试的完整技能,提升Java开发实战能力。
最大熵逆强化学习:理论基础、数学推导与工程实现
本文重点讨论逆强化学习(Inverse Reinforcement Learning, IRL),这是模仿学习的重要分支,其核心目标是基于演示数据学习能够最大化期望奖励的最优策略。
开发效率提升5倍!聚AI的LangFlow可视化全栈指南
LangFlow 是一个强大的可视化流程开发工具,支持全平台部署与多模型集成。通过 Docker 快速启动、本地开发或云服务部署,用户可灵活配置环境。其核心功能包括四大对象管理、可视化编程、自定义组件开发及与 LangChain 的深度整合,适用于客户服务、金融、医疗等多领域自动化流程构建。结合性能优化与版本管理,助力开发者高效实现企业级 AI 应用。
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
云上AI推理平台全掌握 (4):大模型分发加速
为应对大模型服务突发流量场景,阿里云人工智能平台 PAI 推理服务 PAI-EAS 提供本地目录内存缓存(Memory Cache)的大模型分发加速功能,有效解决大量请求接入情况下的推理延迟。PAI-EAS 大模型分发加速功能,零代码即可轻松完成配置。
云上AI推理平台全掌握 (3):服务接入与全球调度
阿里云人工智能平台 PAI 平台推出的全球化的服务接入矩阵,为 LLM 服务量身打造了专业且灵活的服务接入方案,正重新定义 AI 服务的高可用接入标准——从单地域 VPC 安全隔离到跨洲际毫秒级调度,让客户的推理服务在任何网络环境下都能实现「接入即最优」。
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
在智能驾驶技术快速发展中,数据成为驱动算法进步的核心。某新能源汽车领军企业基于阿里云Milvus向量数据库构建智能驾驶数据挖掘平台,利用其高性能、可扩展的相似性检索服务,解决了大规模向量数据检索瓶颈问题,显著降低20%以上成本,缩短模型迭代周期,实现从数据采集到场景挖掘的智能化闭环,加速智能驾驶落地应用。
信息检索重排序技术深度解析:Cross-Encoders、ColBERT与大语言模型方法的实践对比
本文将深入分析三种主流的重排序技术:Cross-Encoders(交叉编码器)、ColBERT以及基于大语言模型的重排序器,并详细阐述各方案在实际应用中的性能表现、成本考量以及适用场景。
AI 搜索 MCP 最佳实践
本文介绍了如何通过 MCP 协议,快速调用阿里云 OpenSearch 、ElasticSearch 等工具,帮助企业快速集成工具链、降低开发复杂度、提升业务效率。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。