重磅!2025年中科院预警期刊名单正式发布!
中国科学院文献情报中心发布的《国际期刊预警名单》旨在防范学术不端与不当出版行为,保护科研生态良性发展。2025年版本聚焦两大问题:学术不端(如引用操纵、论文工厂)和不利于中国学术成果国际化传播的行为(如中国作者占比过高或APC费用不合理)。预警名单动态调整,发布时点从年底改为年初,便于科研人员及时调整投稿策略。被列入预警名单的期刊可能影响职称评审及科研经费认可,建议优先选择中科院分区表推荐期刊,警惕“快速代发”陷阱,并关注期刊官网声明。未来科研生态将更注重规范化与原创性,推动高质量学术发表。维护健康的学术环境对提升中国科研全球影响力至关重要。
基于风险的完整性和检查建模(RBIIM)MATLAB仿真
本程序为基于风险的完整性和检查建模(RBIIM)的MATLAB仿真,适用于评估和优化资产完整性管理计划,特别针对石油化工等领域的管道、储罐等设备。程序在MATLAB 2022A版本下运行,对比了先验密度(Prior Density)、后验完美检测(Posterior Perfect Inspection)、后验不完美检测(Posterior Imperfect Inspection)及累积后验不完美检测四个关键指标。算法采用贝叶斯统计框架,通过更新资产健康状况估计,制定最佳维护与检查策略。示例展示了核心原理与运行效果,完整程序无水印。
从 0 到 1,掌握微店商品详情数据接口
在电商数字化运营中,微店为商家提供便捷的线上销售平台,而微店商品详情数据接口成为连接商品深度信息的重要工具。该接口支持开发者以程序化方式获取商品详细信息,如名称、价格、库存及描述等,助力多渠道同步与数据分析。文章从接口概述、特点到 Python 请求示例,深入解析其应用。示例中使用 Python 的 requests 库发送 GET 请求,获取并解析商品详情数据,帮助用户实现高效开发与问题排查。
数据分析异步进阶:aiohttp与Asyncio性能提升
本项目基于aiohttp与Asyncio开发异步爬虫,目标采集今日头条新闻数据。初期因网站限制机制导致请求异常,通过设置代理IP、Cookie和UserAgent解决拦截问题,并优化异步任务调度与异常捕获提升性能。方案包括动态代理池、统一请求头配置及日志监控,确保高并发下的稳定性。示例代码展示代理IP、请求头设置与错误处理方法,为类似项目提供参考。
一文读懂!微店商品列表数据接口全指南
微店作为电商热门平台,其商品列表数据接口为店铺运营提供了强大支持。通过该接口,开发者可高效获取商品关键数据,助力决策与业务拓展。接口通常采用 GET 或 POST 请求方式,需提供店铺 ID 等参数,返回 JSON 格式数据,包含商品名称、价格、库存等信息。示例代码展示了如何用 Python 调用接口并解析响应数据,帮助用户快速上手。
生成AI的两大范式:扩散模型与Flow Matching的理论基础与技术比较
本文系统对比了扩散模型与Flow Matching两种生成模型技术。扩散模型通过逐步添加噪声再逆转过程生成数据,类比为沙堡的侵蚀与重建;Flow Matching构建分布间连续路径的速度场,如同矢量导航系统。两者在数学原理、训练动态及应用上各有优劣:扩散模型适合复杂数据,Flow Matching采样效率更高。文章结合实例解析两者的差异与联系,并探讨其在图像、音频等领域的实际应用,为生成建模提供了全面视角。
vscode推送项目到github仓库故障解决1
本文介绍了如何优雅解决本地仓库与远程仓库历史记录不一致的问题,并提供避免未来问题的最佳实践。核心在于理解问题根源(如历史记录差异和常见原因),采用推荐的解决方案(先本地初始化再关联远程仓库),并遵循一致的工作流程、团队协作规范及熟悉 Git 命令。通过强制推送或合并无关历史记录等方式处理现有冲突,同时养成良好习惯以预防类似问题。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
解锁3D创作新姿势!Autodesk 3ds Max 2022中文版安装教程(附官方下载渠道)
Autodesk 3ds Max 2022 是一款专业三维建模、动画和渲染软件,广泛应用于影视、游戏、建筑等领域。其特点包括智能建模工具、高效Arnold渲染引擎、跨平台协作及多语言支持。安装需满足Win10/11系统、i5以上处理器、8GB内存等要求。正版安装流程包括下载官方程序、配置组件、激活许可证并验证功能。常见问题如安装失败、中文乱码等提供了解决方案。扩展学习资源推荐Forest Pack、V-Ray等插件,助力用户深入掌握软件功能。
阿里云 AI 搜索产品荣获 Elastic Innovation Award 2024
在新加坡 ElasticON 2025 的 Elastic 合作伙伴峰会上,阿里云 AI 搜索产品荣获 Elastic Innovation Award 2024!
新闻聚合项目:多源异构数据的采集与存储架构
本文探讨了新闻聚合项目中数据采集的技术挑战与解决方案,指出单纯依赖抓取技术存在局限性。通过代理IP、Cookie和User-Agent的精细设置,可有效提高采集策略;但多源异构数据的清洗与存储同样关键,需结合智能化算法处理语义差异。正反方围绕技术手段的有效性和局限性展开讨论,最终强调综合运用代理技术与智能数据处理的重要性。未来,随着机器学习和自然语言处理的发展,新闻聚合将实现更高效的热点捕捉与信息传播。附带的代码示例展示了如何从多个中文新闻网站抓取数据并统计热点关键词。
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
特征平台PAI-FeatureStore的功能列表
本内容介绍了阿里云PAI FeatureStore的功能与使用方法,涵盖离线和在线特征管理、实时特征视图、行为序列特征视图、FeatureStore SDK的多语言支持(如Go、Java、Python)、特征生产简化方案、FeatureDB存储特性(高性能、低成本、及时性)、训练样本导出以及自动化特征工程(如AutoFE)。同时提供了相关文档链接和技术细节,帮助用户高效构建和管理特征工程。适用于推荐系统、模型训练等场景。
shopee商品列表API接口获取步骤
虾皮(Shopee)商品列表 API 接口用于获取平台商品信息,支持按店铺 ID、类目、关键词等筛选条件查询商品数据,包括商品基本信息、图片、描述等。接口具备灵活性、数据丰富及分页机制等特点,满足电商数据分析与管理需求。示例代码展示了通过 Python 请求 API 获取某店铺商品列表的过程,包含请求头设置、参数定义及异常处理等功能,便于开发者快速上手使用。
强化学习:蒙特卡罗求解最优状态价值函数——手把手教你入门强化学习(五)
本文介绍了强化学习中的蒙特卡罗算法,包括其基本概念、两种估值方法(首次访问蒙特卡罗与每次访问蒙特卡罗)及增量平均优化方式。蒙特卡罗法是一种基于完整回合采样的无模型学习方法,通过统计经验回报的平均值估计状态或动作价值函数。文章详细讲解了算法流程,并指出其初期方差较大、估值不稳定等缺点。最后对比动态规划,说明了蒙特卡罗法在强化学习中的应用价值。适合初学者理解蒙特卡罗算法的核心思想与实现步骤。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
社交媒体分析:破解无限滚动的技术实践
本方案介绍了一种高效的数据采集技术,涵盖技术演化路径、传统痛点解决及架构设计。通过代理IP轮换、请求指纹管理与滚动加载模拟等核心模块,大幅提升请求成功率(98%)和数据完整率(91%),显著降低封禁概率(3.2%)。实战代码以微博热搜为例,展示如何结合动态User-Agent、Cookie管理与三级校验机制实现稳定采集。行业应用表明,该方案可将采集效率提升3.8倍,封禁率降至0.7次/日,助力热点事件早期捕捉。适配大规模任务需求,同时注重流量控制与异常处理,确保稳定性与安全性。
GoT:基于思维链的语义-空间推理框架为视觉生成注入思维能力
本文探讨GoT框架如何通过语义-空间思维链方法提升图像生成的精确性与一致性。GoT(Generative Thoughts of Thinking)是一种创新架构,将显式推理机制引入图像生成与编辑领域。它通过语义推理分解文本提示,空间推理分配精确坐标,实现类人的场景构思过程。结合大型语言模型和扩散模型,GoT在复杂场景生成中表现出色,克服传统模型局限。其专用数据集包含900万样本,支持深度推理训练。技术架构融合语义-空间指导模块,确保生成图像高质量。GoT为图像生成与编辑带来技术革新,广泛应用于内容创作与教育工具开发等领域。
最新AI大模型数据集解决方案:分享两种AI高质量代码数据集生产方案
本文分享了两种构建高质量AI代码数据集的解决方案。第一种是传统方式,结合动态住宅代理与手动处理,通过分页读取和数据清洗生成结构化数据;第二种是利用Web Scraper API工具,实现自定义配置、自动化抓取及云端存储。两种方法各具优势,适合不同需求和技术水平的团队。同时,文章还提供了专属优惠福利,助力提升数据采集效率,为AI大模型训练提供支持。
强化学习:动态规划求解最优状态价值函数——手把手教你入门强化学习(四)
本文介绍了基于模型的强化学习算法,重点讲解动态规划(DP)。动态规划通过分解问题为子问题求解状态价值函数,利用贝尔曼期望方程迭代更新。其核心性质包括最优子结构和重叠子问题,适用于已知转移概率和奖励的MDP场景。文章回顾了前期强化学习基础,并展望了后续内容如蒙特卡罗法。适合初学者系统了解强化学习算法原理与应用。
云计算任务调度优化matlab仿真,对比蚁群优化和蛙跳优化
本程序针对云计算任务调度优化问题,旨在减少任务消耗时间、提升经济效益并降低设备功耗。通过对比蚁群优化算法(ACO)与蛙跳优化算法(SFLA),分别模拟蚂蚁信息素路径选择及青蛙跳跃行为,在MATLAB2022A环境下运行测试。核心代码实现任务分配方案的动态调整与目标函数优化,结合任务集合T与服务器集合S,综合考量处理时间与能耗等约束条件,最终输出优化结果。两种算法各具优势,为云计算任务调度提供有效解决方案。
Hologres Dynamic Table快速入门
本文由Hologres PD赵红梅分享,主题为Dynamic Table快速入门。内容分为三部分:一是介绍Dynamic Table,包括其在实时数仓中的应用场景及技术实现;二是讲解Dynamic Table的使用方法与实操,涵盖全量、增量及混合刷新模式的创建与操作;三是提供使用建议,如选择刷新模式、监控延迟、分区表应用及计算资源分配等。此外,还对比了Dynamic Table与其他产品(如DIS异步物化视图和Snowflake Dynamic Tables)的功能差异,并推荐下载Hologres 3.0实践手册以深入了解一体化实时湖仓平台的最新功能。
1688拍立淘图片搜索接口全攻略
1688拍立淘图片搜索接口由阿里巴巴提供,支持通过上传图片在1688平台搜索相似商品。该接口基于图像识别技术,具备高精度匹配、丰富商品信息返回、支持多图片格式及可定制化搜索等特点,适用于电商选品、商品溯源和智能购物等场景。开发者需注册获取app_key与app_secret,并通过Python示例代码调用接口,实现图片搜索功能。
1688商品列表API接口指南
1688 商品列表 API 可帮助开发者和商家获取商品基本信息(如 ID、名称、价格等)、支持筛选排序(类目、价格、销量等条件)、分页查询及指定店铺商品获取,便于商品管理与竞品分析。调用流程包括:注册账号创建应用以获取 App Key 和 App Secret、生成签名确保请求合法性、构造请求参数(含 app_key、sign 等)、发送 HTTP 请求并处理 JSON 响应数据。
StarRocks + Paimon 在阿里集团 Lakehouse 的探索与实践
阿里集团在推进湖仓一体化建设过程中,依托 StarRocks 强大的 OLAP 查询能力与 Paimon 的高效数据入湖特性,实现了流批一体、存储成本大幅下降、查询性能数倍提升的显著成效: A+ 业务借助 Paimon 的准实时入湖,显著降低了存储成本,并引入 StarRocks 提升查询性能。升级后,数据时效提前60分钟,开发效率提升50%;JSON列化存储减少50%,查询性能提升最高达10倍;OLAP分析中,非JOIN查询快1倍,JOIN查询快5倍。 饿了么升级为准实时Lakehouse架构后,在时效性仅损失1-5分钟的前提下,实现Flink资源缩减、StarRocks查询性能提升(仅5%
1688商品详情API接口指南
1688商品详情API是阿里巴巴为开发者提供的一套接口,用于获取1688平台上商品的详细信息,如商品ID、标题、价格、销量、评价、SKU、库存、主图等。通过注册认证、创建应用、构造请求和处理响应,用户可轻松调用API。其应用场景广泛,包括电商网站同步商品信息、内容管理系统生成商品页面、数据分析工具监测市场动态,以及第三方开发者构建比价或库存管理工具等,助力电商从业者优化销售策略与运营效率。
金融数据分析:解析JavaScript渲染的隐藏表格
本文详解了如何使用Python与Selenium结合代理IP技术,从金融网站(如东方财富网)抓取由JavaScript渲染的隐藏表格数据。内容涵盖环境搭建、代理配置、模拟用户行为、数据解析与分析等关键步骤。通过设置Cookie和User-Agent,突破反爬机制;借助Selenium等待页面渲染,精准定位动态数据。同时,提供了常见错误解决方案及延伸练习,帮助读者掌握金融数据采集的核心技能,为投资决策提供支持。注意规避动态加载、代理验证及元素定位等潜在陷阱,确保数据抓取高效稳定。
阿里云 OpenSearch 智能问答版 ➕ DeepSeek R1——打造 B站 UP 主题爆款选题器
阿里云OpenSearch智能问答版+DeepSeek R1,支持多模态数据和联网搜索。以B站up主题爆款选题器为例,打造你的个人专属AI助手,开启你的智能搜索之旅,让AI赋能你的开发! (转载自哔哩哔哩,已获得原作者@老麦的工具库 授权。原视频地址:https://www.bilibili.com/video/BV1M8QmYJEzm/)
RAG-Gym: 基于过程监督的检索增强生成代理优化框架
本文介绍RAG-Gym框架,通过过程监督优化推理与搜索代理。针对传统RAG架构效能限制及提示工程依赖问题,提出统一优化方法。核心贡献包括:设计ReSearch代理架构实现推理与搜索协同;验证过程奖励模型提升性能;系统分析过程监督来源、奖励模型迁移性和性能扩展规律。实验表明,RAG-Gym显著增强知识密集型任务中搜索代理表现,为未来智能系统研发提供理论与实践参考。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。