使用DevEcoStudio 开发、编译鸿蒙 NEXT_APP 以及使用中文插件
# 使用DevEcoStudio 开发、编译鸿蒙 NEXT_APP 以及使用中文插件 #鸿蒙开发工具 #DevEco Studio
从MaxCompute到Milvus:通过DataWorks进行数据同步,实现海量数据高效相似性检索
如果您需要将存储在MaxCompute中的大规模结构化数据导入Milvus,以支持高效的向量检索和相似性分析,可以通过DataWorks的数据集成服务实现无缝同步。本文介绍如何利用DataWorks,快速完成从MaxCompute到Milvus的离线数据同步。
基于混沌加密的遥感图像加密算法matlab仿真
本项目实现了一种基于混沌加密的遥感图像加密算法MATLAB仿真(测试版本:MATLAB2022A)。通过Logistic映射与Baker映射生成混沌序列,对遥感图像进行加密和解密处理。程序分析了加解密后图像的直方图、像素相关性、信息熵及解密图像质量等指标。结果显示,加密图像具有良好的随机性和安全性,能有效保护遥感图像中的敏感信息。该算法适用于军事、环境监测等领域,具备加密速度快、密钥空间大、安全性高的特点。
构建AI时代的大数据基础设施-MaxCompute多模态数据处理最佳实践
本文介绍了大数据与AI一体化架构的演进及其实现方法,重点探讨了Data+AI开发全生命周期的关键步骤。文章分析了大模型开发中的典型挑战,如数据管理混乱、开发效率低下和运维管理困难,并提出了解决方案。同时,详细描述了MaxCompute在构建AI时代数据基础设施中的作用,包括其强大的计算能力、调度能力和易用性特点。此外,还展示了MaxCompute在多模态数据处理中的应用实践以及具体客户案例,最后提供了体验MaxFrame解决方案的方式。

流批一体向量化引擎Flex
本文整理自蚂蚁集团技术专家刘勇在Flink Forward Asia 2024上的分享,聚焦流批一体向量化引擎的背景、架构及未来规划。内容涵盖向量化计算的基础原理(如SIMD指令)、现有技术现状,以及蚂蚁在Flink 1.18中引入的C++开发向量化计算实践。通过Flex引擎(基于Velox构建),实现比原生执行引擎更高的吞吐量和更低的成本。文章还详细介绍了功能性优化、正确性验证、易用性和稳定性建设,并展示了线上作业性能提升的具体数据(平均提升75%,最佳达14倍)。最后展望了未来规划,包括全新数据转换层、与Paimon结合及支持更多算子和SIMD函数。
深入研究: 亚马逊 amazon商品列表API接口 Python 攻略
本内容介绍了亚马逊商品列表API接口的应用价值与操作方法。在电商数据分析驱动决策的背景下,该接口可自动化获取商品基本信息(如名称、价格、评价等),助力市场调研、竞品分析及价格监控等场景。接口通过设置搜索条件(关键词、类目、价格范围等)筛选商品列表,以GET请求方式调用,返回JSON或XML格式数据,包含商品基本信息、价格、评价、图片链接及库存状态等内容。合理使用此接口可提升运营效率、降低人力成本并及时掌握市场动态。

数据可视化实战:如何采集并分析马蜂窝上的热门旅游信息?
通过自动化工具抓取马蜂窝旅游数据,分析杭州热门景点与用户关注焦点,生成排行榜和词云图。项目采用低成本方案,结合Playwright模拟浏览器行为采集信息,并用Python处理数据、绘制图表。结果显示西湖、灵隐寺等为热门景点,游客多关注门票、交通等问题。此方法简单高效,适合个性化旅行攻略分析。
SnapViewer:解决PyTorch官方内存工具卡死问题,实现高效可视化
深度学习训练中,GPU内存不足(OOM)是常见难题。PyTorch虽提供内存分析工具,但其官方可视化方案存在严重性能瓶颈,尤其在处理大型模型快照时表现极差。为解决这一问题,SnapViewer项目应运而生。该项目通过将内存快照解析为三角形网格结构并借助成熟渲染库,充分发挥GPU并行计算优势,大幅提升大型快照处理效率。此外,SnapViewer优化了数据处理流水线,采用Rust和Python结合的方式,实现高效压缩与解析。项目不仅解决了现有工具的性能缺陷,还为开发者提供了更流畅的内存分析体验,对类似性能优化项目具有重要参考价值。
深入研究:亚马逊amazon商品详情API接口Python攻略
亚马逊商品详情API(Product Advertising API)让开发者以编程方式获取亚马逊商品信息,如标题、价格、库存、评价等。功能涵盖商品基本信息、购买属性、用户反馈、分类与促销信息。使用时需选择端点(如ItemLookup或ItemSearch)、构建请求、发送至服务器并处理响应数据(JSON/XML格式),同时做好错误处理。适合电商应用开发与数据分析。
婚恋交友相亲公众号app小程序系统源码「脱单神器」婚恋平台全套代码 - 支持快速二次开发
这是一套基于SpringBoot + Vue3开发的婚恋交友系统,支持微信公众号、Uniapp小程序和APP端。系统包含实名认证、智能匹配、视频相亲、会员体系等功能,适用于婚恋社交平台和相亲交友应用。后端采用SpringBoot 3.x与MyBatis-Plus,前端使用Vue3与Uniapp,支持快速部署和二次开发。适合技术团队或有经验的个人创业者使用。
App Trace技术解析:传参安装、一键拉起与快速安装
本文从开发者视角解析App Trace技术的关键功能与实现方法,涵盖传参安装、一键拉起和快速安装技术。详细介绍了Android和iOS平台的具体实现代码与配置要点,探讨了参数丢失、跨平台一致性及iOS限制等技术挑战的解决方案,并提供了测试策略、监控指标和性能优化的最佳实践建议,帮助开发者提升用户获取效率与体验。
基于RMD算法模型的信号传输统计特性的matlab模拟仿真
本项目基于RMD(Random Midpoint Displacement)算法模型,使用MATLAB 2022A进行信号传输统计特性的模拟仿真。通过递归在区间中点加入随机位移,生成具有自相似性和长相关性的随机信号,实现了文中多个仿真图,并提供操作视频与中文注释代码。RMD模型生成的信号均值为零,方差无穷大,具备低误码率、强抗干扰能力及高传输效率等优势,为现代通信系统提供了新思路。
华为仓颉语言初识:并发编程之同步机制(下)
本文介绍了华为仓颉语言中的三种线程同步机制:MultiConditionMonitor、synchronized和ThreadLocal。MultiConditionMonitor继承自ReentrantMutex,通过条件变量实现复杂线程同步,文中以生产者-消费者模型为例展示了其用法。synchronized关键字自动加解锁,简化了ReentrantMutex的使用。ThreadLocal则通过线程局部存储实现线程隔离。这三种机制分别适用于不同场景,与Java中的同步工具类似,掌握后可以有效解决多线程并发问题。文章包含代码示例和测试结果,清晰地展示了各机制的实现原理和使用方法。

鸿蒙Next实现瀑布流布局
在开始实现瀑布流布局前,需确保已安装好 DevEco Studio,且已配置好鸿蒙开发环境。打开 DevEco Studio,新建一个鸿蒙应用项目,选择合适的模板(如 Empty Feature Ability),设置项目名称、包名等信息,完成项目创建。
1688API接口终极宝典:列表、详情全掌握,图片搜索攻略助你一臂之力
1688为开发者提供涵盖商品、交易、物流等核心业务的丰富API。商品类API支持搜索、详情获取及图片搜索等功能;交易类API可实现订单创建、查询与支付;物流类API提供报价、轨迹查询及服务商列表获取等服务,满足多样化开发需求。
2025 版 Java 学习路线图之技术方案与实操指南详解
这是一份详尽的Java学习路线图,涵盖从入门到精通的全流程。基础阶段包括环境搭建、语法基础与面向对象编程;进阶阶段深入数据结构、算法、多线程及JVM原理;框架阶段学习Spring、MyBatis等工具;数据库阶段掌握SQL与NoSQL技术;前端阶段了解HTML、CSS及JavaScript框架;分布式与微服务阶段探讨容器化、服务注册与发现;最后通过项目实战提升性能优化与代码规范能力。资源地址:[https://pan.quark.cn/s/14fcf913bae6](https://pan.quark.cn/s/14fcf913bae6)。
体育动画直播怎么做出来的?揭秘从数据到卡通的魔法过程!
体育动画直播是一种结合实时数据、游戏引擎与AI技术的创新形式,可将真实比赛数据转化为动画呈现。它支持自由视角观看、100%还原比赛细节,适用于足球/篮球可视化直播、电竞虚拟形象直播等场景。制作流程包括数据采集(如球员定位、生物力学数据)、3D建模(创建虚拟球场与球员模型)、动画生成(关键帧或AI驱动动作)及实时渲染播出。开发者需注意数据清洗、性能优化与版权问题,未来还将融入元宇宙技术,带来全息、VR沉浸式体验。这是一场体育与科技的完美碰撞!
小红书视频图文提取:采集+CV的实战手记
这是一套用于自动抓取小红书热门视频内容的工具脚本,支持通过关键词搜索提取前3名视频的封面图、视频文件及基本信息(标题、作者、发布时间)。适用于品牌营销分析、热点追踪或图像处理等场景。脚本包含代理配置、接口调用和文件下载功能,并提供扩展建议如图像识别与情绪分析。适合需要高效采集小红书数据的团队或个人使用,稳定性和灵活性兼备。
提升长序列建模效率:Mamba+交叉注意力架构完整指南
本文探讨了Mamba架构中交叉注意力机制的集成方法,Mamba是一种基于选择性状态空间模型的新型序列建模架构,擅长处理长序列。通过引入交叉注意力,Mamba增强了多模态信息融合和条件生成能力。文章从理论基础、技术实现、性能分析及应用场景等方面,详细阐述了该混合架构的特点与前景,同时分析了其在计算效率、训练稳定性等方面的挑战,并展望了未来优化方向,如动态路由机制和多模态扩展,为高效序列建模提供了新思路。
深入研究:shopee商品列表API接口指南
Shopee 是东南亚和中国台湾地区的跨境电商平台,其开放平台(Shopee Open API)为开发者提供商品数据、店铺管理和订单处理等接口。商品列表 API 为核心功能之一,支持按店铺获取商品列表和搜索平台商品。通过 shop_id 等参数可获取指定店铺商品信息,支持分页与状态筛选;通过关键词、类目 ID 和价格范围等条件可搜索平台商品,适用于构建比价工具和选品分析系统。
大学四年学好 Java 拿到 offer 的过来人生成长尾关键词 Java 学习路线分享
这是一篇针对大一学生学习Java的指南,帮助你在大学四年中系统掌握Java,最终成功拿到offer。文章详细介绍了Java的学习路线,包括Java基础(JavaSE)、异常处理、并发多线程(可选)和JVM基础知识。同时提供了具体的学习方法,如观看视频教程、阅读经典书籍和刷技术博客。此外,还给出了简单计算器和多线程打印等应用实例,帮助巩固所学知识。按照此路线认真学习,为未来深入研究和求职打下坚实基础。资源地址:[点击下载](https://pan.quark.cn/s/14fcf913bae6)。
阿里云增值税发票识别NET Rest API调用示例
本文介绍了使用NET代码调用阿里云增值税发票识别API的实现方式。通过示例代码,详细展示了如何构造请求、设置签名以及发送HTTP请求的具体步骤。代码中涵盖了请求参数的处理、签名生成逻辑(如HMAC-SHA256算法)以及调用API后的结果处理。此外,还提供了运行结果的截图和参考文档链接,帮助开发者更好地理解和应用该接口。
2025 版大学四年学好 Java 并成功拿到 offer 的技术选型与环境搭建全攻略
这篇指南为大一新生提供了系统化的Java学习路线,涵盖环境搭建、核心技术实战与项目经验。首先推荐使用IntelliJ IDEA和OpenJDK 21,掌握函数式编程、异常处理及虚拟线程等关键技能。其次通过图书馆管理系统项目实践MVC架构,结合Spring Boot与H2数据库巩固知识。规划建议从基础语法到集合框架逐步深入,并参与开源项目提升能力。配套在线课程与技术社区资源助力高效学习,助你在大学四年打下坚实基础,顺利拿到offer。
LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统
本文介绍了使用LangGraph和LangSmith构建企业级多智能体AI系统的完整流程。从简单的ReAct智能体开始,逐步扩展至包含身份验证、人工干预、长期内存管理和性能评估的复杂架构。文章详细讲解了状态管理、工具集成、条件流程控制等关键技术,并对比了监督者架构与群体架构的优劣。通过系统化的方法,展示了如何构建可靠、可扩展的AI系统,为现代AI应用开发提供了坚实基础。*作者:Fareed Khan*
基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法matlab仿真
本项目实现基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法的MATLAB仿真,对比SVM和GWO-SVM性能。算法结合差分进化(DE)与灰狼优化(GWO),优化SVM参数以提升复杂高维数据预测能力。核心流程包括DE生成新种群、GWO更新位置,迭代直至满足终止条件,选出最优参数组合。适用于分类、回归等任务,显著提高模型效率与准确性,运行环境为MATLAB 2022A。
深入研究:shopee商品详情API接口Python攻略
Shopee 商品详情 API 是用于获取 Shopee 平台商品详细信息的接口,支持开发者提取商品标题、价格、库存、描述和图片等多维度数据。该接口适用于电商数据分析、比价工具开发及商品监控等场景。请求方式为 GET,需提供 itemid(商品 ID)和 shopid(店铺 ID),返回格式为 JSON。部分功能可能需要 API 密钥或访问令牌认证。以马来西亚站点为例,URL 为 shopee.com.myapi/v4/item/get,不同国家站点域名可能有所不同。
基于DNA算法的遥感图像加解密matlab仿真
本程序基于DNA算法实现遥感图像加密与解密,利用DNA分子双螺旋结构和碱基配对规则完成信息编码。主要步骤包括图像预处理、DNA编码、DNA操作(杂交、酶切、连接)及密钥生成管理。通过直方图、相关性、熵和解密后图像质量分析验证效果。程序在MATLAB2022A版本运行,具有高效性和安全性,但需解决操作准确性与密钥管理复杂性等挑战。
Apache Spark详解
Apache Spark 是一个开源、分布式计算引擎,专为大规模数据处理设计。它以高速、易用和通用为核心目标。通过内存计算、DAG 执行引擎和惰性求值等特性,大幅提升数据处理效率。其核心组件包括 Spark Core、Spark SQL、Spark Streaming、MLlib 和 GraphX,支持批处理、实时流处理、机器学习和图计算。Spark 提供统一编程模型,支持多语言(Scala/Java/Python/R),并拥有强大的 Catalyst 优化器和类型安全的 Dataset API,广泛应用于大数据分析和处理场景。
【Java 程序员面试 + 学习指南】覆盖互联网一线大厂 Java 程序员所需面试知识点与技巧
本指南专为Java程序员准备互联网大厂面试而设,涵盖面试知识点与技巧两大部分。知识点包括Java基础(面向对象、集合框架、并发编程)、JVM(内存分区、回收机制、类加载机制)、数据库(MySQL、Redis)、开发框架(Spring、Spring Boot、MyBatis)及其他相关技术(计算机网络、操作系统)。面试技巧涉及简历撰写、项目经验阐述及答题策略,助你全面提升面试成功率。提供资源链接,支持深入学习。
DROPP算法详解:专为时间序列和空间数据优化的PCA降维方案
DROPP(Dimensionality Reduction for Ordered Points via PCA)是一种专为有序数据设计的降维方法,通过结合协方差分析与高斯核函数调整,有效融入数据顺序特性。本文详细解析了DROPP的理论基础、实现步骤及其应用。算法核心在于利用相邻元素间的相似性特征,关注局部邻域信息以降低噪声影响,适用于时间序列或空间序列数据。文中通过模拟数据示例展示了算法的具体实现过程,并总结了其在气候研究和分子动力学等领域的广泛应用潜力。
搭建一个好的体育比分直播平台,有哪些板块
如何打造一款让用户爱不释手的体育比分平台?本文从核心功能到细节优化,全面解析关键要素。核心板块包括实时比分系统(毫秒级更新、多赛事覆盖)、比赛详情页(阵容、技术统计、事件时间轴)和多语言支持。增强体验方面,通过数据可视化(热图、传球网络图)、个性化订阅(关注球队/联赛)及社交互动提升用户参与感。技术后台需解决数据采集与清洗、高并发架构以及监控报警问题,同时注重多端一致性和法律合规。成功秘诀:50%技术实力+50%用户体验!
深入浅出:微店商品详情API接口Python攻略
本教程介绍如何使用Python与微店商品详情API交互。首先,确保安装`requests`库(`pip install requests`)。接着,在微店开发者平台注册应用以获取API访问权限。然后,通过编写Python代码调用API,示例函数`get_weidian_product_detail`可传入商品ID和AppKey获取商品详情(如名称、价格、图片等)。最后,处理返回的JSON数据并注意错误处理和查阅最新API文档。按此步骤,即可顺利获取商品信息。
运营商三要素API的实战指南:实现 “人 - 证 - 号” 三位一体核验
在数字身份欺诈频发的背景下,传统单点验证已无法满足高安全需求。探数API推出的“运营商三要素核验API”,通过姓名、身份证号、手机号的三重交叉验证,构建起“铁三角”防线,广泛适用于金融、政务、电商等领域。该API支持一致性验证及基础信息返回(可选),具备高准确性与防伪性,远超单一或双因素验证方式。其调用流程简单,提供Python示例代码及异常处理建议,助力打造更安全的数字身份体系,成为连接多领域的关键桥梁。未来,多因子融合的身份认证将成为趋势,而三要素核验API正是当前可信数字身份的重要基石。
朴素贝叶斯处理混合数据类型,基于投票与堆叠集成的系统化方法理论基础与实践应用
本文探讨了朴素贝叶斯算法在处理混合数据类型中的应用,通过投票和堆叠集成方法构建分类框架。实验基于电信客户流失数据集,验证了该方法的有效性。文章详细分析了算法的数学理论基础、条件独立性假设及参数估计方法,并针对二元、类别、多项式和高斯分布特征设计专门化流水线。实验结果表明,集成学习显著提升了分类性能,但也存在特征分类自动化程度低和计算开销大的局限性。作者还探讨了特征工程、深度学习等替代方案,为未来研究提供了方向。(239字)
深入浅出:拼多多商品列表API接口Python攻略
拼多多是中国领先的社交电商平台,为开发者提供了丰富的API接口,用于集成商品数据到第三方应用。通过Python可以轻松调用这些API获取商品列表。主要步骤包括:1) 安装必要库(如`requests`);2) 使用AppKey和AppSecret获取访问令牌;3) 调用商品列表API,传入参数如商品ID、页码等;4) 解析返回的JSON数据提取所需信息。按照此流程,开发者能够快速实现与拼多多平台的数据交互。
华为仓颉语言初识:并发编程之同步机制(上)
本文介绍了华为仓颉语言中的三种常见线程同步机制:原子操作、互斥锁和条件变量。原子操作(如AtomicInt64)确保多线程下的数据访问安全;可重入互斥锁(ReentrantMutex)通过lock()、unlock()和tryLock()方法解决线程竞争问题;Monitor作为内置锁,扩展了wait()、notify()和notifyAll()功能,用于线程间通信。文章通过代码示例详细解析了每种机制的使用场景与注意事项,帮助开发者快速掌握仓颉语言的同步机制,保障多线程程序的安全性。
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。

Flink在B站的大规模云原生实践
本文基于哔哩哔哩资深开发工程师丁国涛在Flink Forward Asia 2024云原生专场的分享,围绕Flink On K8S的实践展开。内容涵盖五个部分:背景介绍、功能及稳定性优化、性能优化、运维优化和未来展望。文章详细分析了从YARN迁移到K8S的优势与挑战,包括资源池统一、环境一致性改进及隔离性提升,并针对镜像优化、Pod异常处理、启动速度优化等问题提出解决方案。此外,还探讨了多机房容灾、负载均衡及潮汐混部等未来发展方向,为Flink云原生化提供了全面的技术参考。
鸿蒙NEXT上传图片功能PhotoViewPicker核心功能解析
`PhotoViewPicker` 是鸿蒙系统中用于媒体资源选择的核心组件,通过它可以便捷地实现图片、视频等媒体文件的选择功能。下面从基本用法、参数配置到高级应用进行全面解析:
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
云计算SLA响应时间的matlab模拟与仿真
本项目基于MATLAB 2022a,模拟了排队理论中的FIFO(先入先出)队列模型。程序通过Poisson随机变量生成数据包流量,使用公式`q(t)=max(0,q(t-1)+a(t)-1)`计算缓冲区中数据包数量随时间的变化,并输出`q(t)`柱状图及时间差分析结果。核心算法结合M/M/1排队模型与Little's Law,评估响应时间受网络延迟、处理时间和队列等待等因素的影响,为云计算SLA性能优化提供理论支持。
核验身份证的一致性API的实战指南
随着网络空间安全问题日益突出,实名制成为保障安全与秩序的重要手段。探数API的身份证实名认证工具通过姓名和身份证号核验用户身份真实性,并返回扩展信息,广泛应用于各行业。本文介绍了其实现功能、调用流程及代码示例,同时解答了关于个人信息安全等常见疑问。接入该API不仅满足合规要求,更能提升用户信任,降低运营风险,共同构建安全高效的数字未来。
让回归模型不再被异常值"带跑偏",MSE和Cauchy损失函数在噪声数据环境下的实战对比
本文探讨了MSE与Cauchy损失函数在线性回归中的表现,特别是在含噪声数据环境下的差异。研究发现,MSE虽具良好数学性质,但对异常值敏感;而Cauchy通过其对数惩罚机制降低异常值影响,展现出更强稳定性。实验结果表明,Cauchy损失函数在处理含噪声数据时参数估计更接近真实值,为实际应用提供了更鲁棒的选择。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。