ADB的自研向量化执行引擎是如何提升大数据量分析场景的性能的?
ADB在保留原生Greenplum/PostgreSQL引擎的同时,自研了Block-Oriented(Batch-at-a-time)向量化执行引擎。该引擎通过每次处理一批记录(而非单条记录),并综合运用向量化(Vectorization)和即时编译(JIT)技术,提高了CPU指令和数据缓存命中率,减少了函数调用次数和开销,降低了内存分配回收次数和碎片管理开销。此外,向量化执行还能更好地利用CPU的指令流水线执行,减少分支预测失败,并有利于编译器生成SIMD指令,从而提高执行效率。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。