在 Spark Structured Streaming 中,水印是如何计算和使用的?
在 Spark Structured Streaming 中,水印是全局的,在每个批次计算触发结束后重新计算。新的水印是取触发器执行前看到的最大时间戳和触发器执行中数据中的最大时间戳之间的最大值,然后减去宽限时间。在存在多个输入源的场景中,Spark 会跟踪每个输入流的情况,单独计算出水印,然后选择最小值作为全局水印。基于这个全局水印,Spark 可以维护到达的数据状态,并通过与迟到数据聚合来更新它,小于水印的延迟数据将被聚合,超过水印的数据将被丢弃。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。