开发者社区 > 大数据与机器学习 > 实时计算 Flink > 正文

是不是每一个批处理都要启动和销毁一次flink的job manager?

Flink 这个批处理耗时也太长了点儿吧!是不是每一个批处理都要启动和销毁一次flink的job manager?9eb4ccd8e5ac6910c291db9297ea4431.png

展开
收起
三分钟热度的鱼 2024-05-04 23:47:57 87 0
9 条回答
写回答
取消 提交回答
  • 在Flink中,JobManager是负责协调和管理作业执行的组件。对于批处理作业(也称为批作业或批处理流),JobManager的行为取决于Flink集群的运行模式和作业的配置。以下是几种不同情况下JobManager的行为:

    常规批处理作业:对于常规的批处理作业,通常在作业提交后启动JobManager,并在作业执行完成后销毁。这意味着每个批处理作业都有自己的JobManager实例,它在作业开始时启动,并在作业结束时关闭。

    Flink Per-Job Clusters:在这种模式下,每个作业都有自己的集群,包括JobManager和TaskManager。作业提交时启动集群,作业完成后,整个集群包括JobManager会被销毁。

    Flink Session Clusters:在这种模式下,Flink集群长期运行,可以接受并执行多个作业。JobManager和TaskManager作为集群的一部分,不会在单个作业完成后销毁,而是继续运行以服务于其他作业。

    Flink Application Mode:在Application Mode中,作业的生命周期与JobManager的生命周期是一致的。当作业完成时,JobManager会销毁,但这种方式通常用于轻量级的流处理作业。 你看看呢

    2024-08-05 22:32:47
    赞同 展开评论 打赏
  • 在 Apache Flink 中,并不需要为每个批处理启动和销毁一次 JobManager。实际上,Flink 作业的管理是由 Flink 的 JobManager 组件负责的,它负责作业的调度、监控、故障恢复等。JobManager 通常在 Flink 集群启动时启动,并在整个集群运行期间保持运行状态。
    当你提交一个 Flink 作业时,你需要提供一个配置文件(通常是 flink-conf.yaml)和一个作业描述(例如,一个 JAR 文件或者一个 SQL 文件)。JobManager 会读取这些信息,并创建一个作业图(JobGraph),然后将这个图转换为可以由 TaskManagers 执行的执行图(ExecutionGraph)。
    一旦作业被提交,JobManager 会启动并运行,直到作业完成或者遇到错误。在这个过程中,JobManager 会管理所有 TaskManagers,分配任务,监控作业状态,并且在必要时进行故障恢复。
    如果你有多个作业,JobManager 会依次处理它们。对于每个作业,JobManager 会创建一个新的 ExecutionGraph,并将其提交给 TaskManagers 执行。但是,JobManager 本身不会为每个作业启动和销毁,它会一直运行,直到集群被停止或者重启。
    总结来说,Flink 的 JobManager 负责作业的管理和调度,不需要为每个批处理作业都启动和销毁一次。

    2024-08-05 16:26:00
    赞同 展开评论 打赏
  • 不是每一个批处理作业都需要启动和销毁一次Flink的Job Manager,Flink的架构设计允许Job Manager作为长期运行的服务存在,负责接收作业提交、调度任务以及监控作业执行等。当提交一个新的批处理作业时,Job Manager会分配必要的Task Manager资源来执行该作业,而Job Manager本身并不需要为每个新作业启动或销毁。这一特性使得Flink能够高效地管理和执行多个作业,无论是批处理还是流处理作业。

    2024-07-27 21:09:10
    赞同 展开评论 打赏
  • 了优化批处理作业的执行时间,您可以考虑以下措施:

    了优化批处理作业的执行时间,您可以考虑以下措施:

    使用高效的资源管理策略,例如适当设置并行度和内存管理。
    优化数据读写操作,例如使用高效的序列化和反序列化策略。
    优化代码,例如避免不必要的数据转换和计算。
    使用更快的数据源和目标,例如使用本地文件系统或 SSD 存储。
    考虑使用更高效的批处理策略,例如微批处理或流批一体。
    使用高效的资源管理策略,例如适当设置并行度和内存管理。
    优化数据读写操作,例如使用高效的序列化和反序列化策略。
    优化代码,例如避免不必要的数据转换和计算。
    使用更快的数据源和目标,例如使用本地文件系统或 SSD 存储。
    考虑使用更高效的批处理策略,例如微批处理或流批一体。

    2024-07-27 19:11:04
    赞同 展开评论 打赏
  • Apache Flink 是一种分布式数据流处理引擎,它可以用于实时流处理和批处理任务。对于批处理任务来说,Flink 实例并不需要为每个作业都启动和销毁 JobManager。实际上在执行 Flink 批处理任务时,Flink 集群通常会保持活跃状态,并且可以同时运行多个作业。当新的批处理作业提交到集群后,Flink 会自动分配资源来运行该作业,而不需要每次都重新初始化整个集群或 JobManager。然而批处理任务的耗时可能受到多种因素的影响,包括输入数据量大小、作业逻辑复杂性、可用计算资源的数量和质量等等。如果批处理任务确实耗时较长,您应该检查作业的实现是否优化得当,或者考虑调整 Flink 集群的配置以提高性能。

    2024-07-26 16:14:56
    赞同 展开评论 打赏
  • 阿里云大降价~

    不是的呀,
    Job Manager主要负责作业的调度与管理,其生命周期并不绑定于单个批处理作业。并且在Flink集群中,Job Manager通常是长期运行的服务,可以管理多个作业,包括批处理作业和流处理作业。当有新的批处理作业提交时,Job Manager会分配资源给作业并监控其执行情况,作业完成后,相关资源会被回收,但Job Manager本身保持活跃,以便处理接下来的作业调度任务
    so,不是的。
    image.png

    参考文档

    2024-07-25 14:52:32
    赞同 展开评论 打赏
  • 不是每一个批处理都要启动和销毁一次flink的job manager。

    JobManager 是 Flink 集群的控制单元。 它由三种不同的组件组成:ResourceManager、Dispatcher 和每个正在运行作业的 JobMaster。
    image.png

    可以直接在该页面查看节点实例的运行日志信息。能看到哪里时间比较长。
    image.png

    ——参考链接

    2024-07-24 23:49:08
    赞同 1 展开评论 打赏
  • 不是每一个批处理都要启动和销毁一次Flink的Job Manager。

    Flink是一个分布式流处理和批处理计算框架,其设计目标之一就是高效地处理大规模数据流和批处理任务。在Flink集群中,Job Manager是管理节点,负责接收和处理用户提交的作业,包括作业的初始化和启动、资源分配、任务调度和执行、故障恢复等。而TaskManager是工作节点,负责执行具体的任务。

    对于批处理任务,用户将作业提交给Flink集群后,Job Manager会负责作业的初始化和启动,包括分配必要的资源、启动TaskManager进程以及分发作业代码和数据。一旦作业开始执行,它会在TaskManager上运行,直到作业完成。在这个过程中,Job Manager和TaskManager都是持续运行的,它们之间通过心跳机制和RPC(远程过程调用)进行通信,以确保作业的顺利执行。

    因此,对于多个批处理任务,只要它们被提交到同一个Flink集群上,就可以共享这个集群的资源,包括Job Manager和TaskManager。这意味着,在集群资源充足的情况下,多个批处理任务可以并行执行,而无需为每个任务都启动和销毁一次Job Manager。

    当然,如果Flink集群被关闭或重启,那么Job Manager和TaskManager也会随之停止运行。但在这种情况下,它是针对整个集群的,而不是针对单个批处理任务的。此外,如果集群资源不足或配置有误,也可能会导致某些批处理任务无法执行或执行效率低下,但这与是否每个批处理都要启动和销毁一次Job Manager无关。

    综上所述,不是每一个批处理都要启动和销毁一次Flink的Job Manager。相反,Flink集群的设计使得多个任务可以共享资源并高效地执行。

    2024-07-24 10:13:45
    赞同 展开评论 打赏
  • 是的,每个批处理任务都需要启动和销毁 Flink 的 JobManager。这是因为 Flink 是为流式处理设计的,并且在执行批处理作业时会将其视为无限数据流。因此在每次运行批处理作业时,Flink 都需要启动一个新的 JobManager 来管理该作业的执行。

    2024-07-23 14:51:07
    赞同 展开评论 打赏
滑动查看更多

实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。

相关产品

  • 实时计算 Flink版
  • 相关电子书

    更多
    Flink CDC Meetup PPT - 龚中强 立即下载
    Flink CDC Meetup PPT - 王赫 立即下载
    Flink CDC Meetup PPT - 覃立辉 立即下载